Control of thermal current in the Brownian heat pump


Here heat conduction in the Brownian heat pump (BHP) driven by external periodic forces is investigated. By means of numerical simulation, we found that thermal current of the BHP can be controlled by means of the external periodic forces. As phase shift ϕ of the BHP takes smaller values, if one end of the BHP is regulated only by one periodic force, the thermal current can go from the end to the other end of the BHP. Whereas for the greater values of ϕ, the thermal current can go from the other end to the end adjusted by the periodic force. With the increment of amplitude of the periodic force, a thermal current reversal phenomenon takes places in the BHP. In the system, there also exists a critical phenomenon about ϕ, at whose critical point its thermal current is almost equal to zero no matter how the amplitude of the periodic force is changed. If the two ends of the BHP are adjusted simultaneously by their own periodic forces, its thermal current takes both positive and negative values, and oscillates periodically with the phase difference between the two periodic forces. The results will possess a crucial significance in understanding performance mechanisms of nano-machines and organisms.

Graphical abstract

This is a preview of subscription content, log in to check access.


  1. 1.

    M.V. Smoluchowski, Phys. Z. 13, 1069 (1912)

    Google Scholar 

  2. 2.

    R.P. Feynman, R.B. Leighton, M. Sands,The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1966)

  3. 3.

    T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina, M. Weitz, Science 326, 1241 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    I. Goychuk, V. Kharchenko, Phys. Rev. E 85, 051131 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    P. Reimann, Phys. Rep. 361, 57 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    X.X. Sun, L.R. Nie, P. Li, Europhys. Lett. 95, 50003 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    H. Lodish et al.,Molecular Cell Biology (Freeman, New York, 2000)

  9. 9.

    A. Parmeggiani, F. Jülicher, A. Ajdari, J. Prost, Phys. Rev. E 60, 2127 (1999)

    ADS  Article  Google Scholar 

  10. 10.

    H.X. Zhou, Y.D. Chen, Phys. Rev. Lett. 77, 194 (1996)

    ADS  Article  Google Scholar 

  11. 11.

    Z.C. Tu, X. Hu, Phys. Rev. B 72, 033404 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)

    Article  Google Scholar 

  13. 13.

    M. Schreier, P. Reimann, P. Hänggi, E. Pollak, Europhys. Lett. 44, 416 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    Z.R. Zhou, L. Bai, C.Z. Shu, L.R. Nie, Eur. Phys. J. B 85, 287 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    B.Q. Ai, Y.F. He, W.R. Zhong, Phys. Rev. E 82, 061102 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    D. Guo, C. Li, D.C. Mei, Physica A 525, 1192 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    S. Savel’ev, F. Marchesoni, F. Nori, Phys. Rev. E 71, 011107 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    M. Feito, F.J. Cao, Phys. Rev. E 76, 061113 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    M. Borromeo, S. Giusepponi, F. Marchesoni, Phys. Rev. E 74, 031121 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    S. Savel’ev, F. Marchesoni, P. Hänggi, F. Nori, Phys. Rev. E 70, 066109 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    D. Barik, P.K. Ghosh, D.S. Ray, J. Stat. Mech. 2006, P03010 (2006)

    Google Scholar 

  22. 22.

    L.L. Yu, L. Bai, L.R. Nie, X.H. Wang, Eur. Phys. J. B 86, 351 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    R.Y. Chen, W.L. Pan, J.Q. Zhang, L.R. Nie, Chaos 26, 093113 (2016)

    Article  Google Scholar 

  24. 24.

    L. Cao, D.J. Wu, Phys. Lett. A 291, 371 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    W. Guo, D.C. Mei, Physica A 416, 90 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    R.Y. Chen, L.R. Nie, C.Y. Chen, Chaos 28, 053115 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    R.Y. Chen, L.R. Nie, C.Y. Chen, C.J. Wang, J. Stat. Mech. 2017, 013201 (2017)

    Article  Google Scholar 

  28. 28.

    D. Speer, R. Eichhorn, P. Reimann, Europhys. Lett. 79, 10005 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    D. Speer, R. Eichhorn, P. Reimann, Phys. Rev. Lett. 102, 124101 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    R.Y. Chen, C.J. Wang, Z.F. He, Chaos Solitons Fractals 126, 116 (2019)

    ADS  Article  Google Scholar 

  31. 31.

    R.Y. Chen, X.N. Lv, Physica A 514, 336 (2019)

    ADS  Article  Google Scholar 

  32. 32.

    J.C. Li, C. Li, D.C. Mei, Phys. Lett. A 378, 1997 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    L.J. Yang, F. Lv, D.C. Mei, Physica A 432, 331 (2015)

    ADS  Article  Google Scholar 

  34. 34.

    L.L. Yu, R.Y. Chen, L.R. Nie, Eur. Phys. J. B 88, 1 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    C. Van den Broeck, R. Kawai, Phys. Rev. Lett. 96, 210601 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    M. Van den Broek, C. Van den Broeck, Phys. Rev. Lett. 100, 130601 (2008)

    ADS  Article  Google Scholar 

  37. 37.

    A. Gomez-Marin, J.M. Sancho, Phys. Rev. E 71, 021101 (2005)

    ADS  Article  Google Scholar 

  38. 38.

    L.R. Nie, L.L. Yu, Z.G. Zhang, C.Z. Shu, Phys. Rev. E 87, 062142 (2013)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Linru Nie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Shi, Z. & Nie, L. Control of thermal current in the Brownian heat pump. Eur. Phys. J. B 93, 56 (2020).

Download citation


  • Statistical and Nonlinear Physics