2D Hexagonal SnTe monolayer: a quasi direct band gap semiconductor with strain sensitive electronic and optical properties

An Erratum to this article was published on 06 July 2020

This article has been updated

Abstract

The stability and electronic and optical properties of two-dimensional (2D) SnTe monolayer has been systematically studied by using first-principles calculations based on density functional theory. Our computations demonstrate that the predicted 2D SnTe monolayer is a stable quasi-direct semiconductor. Also, analysis of its electronic property shows that the ground state of this monolayer is a quasi-direct semiconductor with a band gap of ~2.00. This band gap can be effectively modulated by external strains. Investigation of optical properties shows that monolayer SnTe exhibits significant absorption and reflectivity in the ultraviolet region of the electromagnetic spectrum.

Graphical abstract

This is a preview of subscription content, access via your institution.

Change history

  • 06 July 2020

    The fourth author���s name, Shorin Amirian, in the published article was wrong. It has been corrected to Shirin Amirian.

References

  1. 1.

    B. Smiri, I. Fraj, M. Bouzidi, F. Saidi, A. Rebey, H. Maaref, Results Phys. 12, 2175 (2019)

    ADS  Google Scholar 

  2. 2.

    D. Chen, G. Zhang, Z. Cheng, S. Dong, Y. Wang, IUCrJ 6, 189 (2019)

    Google Scholar 

  3. 3.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 5696 (2004)

    Google Scholar 

  4. 4.

    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  5. 5.

    X. Zhang, Y. Xie, Chem. Soc. Rev. 42, 8187 (2013)

    ADS  Google Scholar 

  6. 6.

    Q. Tang, Z. Zhou, Prog. Mater. Sci. 58, 1244 (2013)

    Google Scholar 

  7. 7.

    K.J. Koski, Y. Cui, ACS Nano 7, 3739 (2013)

    Google Scholar 

  8. 8.

    L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012)

    ADS  Google Scholar 

  9. 9.

    A.L. Ivanovskii, A.N. Enyashin, Russ. Chem. Rev. 82, 735 (2013)

    ADS  Google Scholar 

  10. 10.

    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26, 992 (2014)

    Google Scholar 

  11. 11.

    P.Z. Tang, P.C. Chen, W.D. Cao, H.Q. Huang, S. Cahangirov, L.D. Xian, Y. Xu, S.C. Zhang, W.H. Duan, A. Rubio, Phys. Rev. B 90, 121408 (2014)

    ADS  Google Scholar 

  12. 12.

    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    ADS  Google Scholar 

  13. 13.

    S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    ADS  Google Scholar 

  14. 14.

    H. Lu, S-D. Li, J. Mater. Chem. C 1, 3677 (2013)

    Google Scholar 

  15. 15.

    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    ADS  Google Scholar 

  16. 16.

    M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, New J. Phys. 16, 095002 (2014)

    ADS  Google Scholar 

  17. 17.

    S. Balendhran, S. Walia, H. Nili, S. Sriram, Small 11, 640 (2014)

    Google Scholar 

  18. 18.

    S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 55, 1666 (2016)

    Google Scholar 

  19. 19.

    M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, H. Zeng, Nano Energy 28, 433 (2016)

    Google Scholar 

  20. 20.

    X. Yu, S. Zhang, H. Zeng, Q.J. Wang, Nano Energy 25, 34 (2015)

    Google Scholar 

  21. 21.

    S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 54, 3112 (2015)

    Google Scholar 

  22. 22.

    J. Ji, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 7, 13352 (2016)

    ADS  Google Scholar 

  23. 23.

    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Proc. Natl. Acad. Sci. 112, 2372 (2015)

    ADS  Google Scholar 

  24. 24.

    A. Lopez-Bezanilla, P.B. Littlewood, J. Phys. Chem. C. 119, 19469 (2015)

    Google Scholar 

  25. 25.

    S. Zhang, J. Zhou, Q. Wang, P. Jena, J. Phys. Chem. C. 120, 3993 (2016)

    Google Scholar 

  26. 26.

    F. Li, K. Tu, H. Zhang, Z. Chen, Phys. Chem. Chem. Phys. 17, 24151 (2015)

    Google Scholar 

  27. 27.

    F. Li, K. Tu, H. Zhang, Z. Chen, Phys. Chem. Chem. Phys. 17, 24151 (2015)

    Google Scholar 

  28. 28.

    M. Naseri, Appl. Surf. Sci. 423, 566 (2017)

    ADS  Google Scholar 

  29. 29.

    M. Naseri, S. Lin, J. Jalilian, J. Gu, Z. Chen, Front. Phys. 13, 138102 (2018)

    ADS  Google Scholar 

  30. 30.

    M. Naseri, Chem. Phys. Lett. 685, 310 (2017)

    ADS  Google Scholar 

  31. 31.

    H. Morshedi, M. Naseri, M.R. Hantehzadeh, S.M. Elahi, J. Electron. Mater. 47, 2290 (2018)

    ADS  Google Scholar 

  32. 32.

    M. Naseri, Phys. Lett. A 382, 710 (2018)

    ADS  Google Scholar 

  33. 33.

    M. Naseri, Chem. Phys. Lett. 706, 99 (2018)

    ADS  Google Scholar 

  34. 34.

    D. Wang, Y. Wu, Z. Wan, F. Wang, Z. Wang, C. Hu, X. Wang, H. Zhou, RSC Adv. 9, 19495 (2019)

    Google Scholar 

  35. 35.

    J. Qin, C. Hao, D. Wang, F. Wang, X. Yan, Y. Zhong, Z. Wang, C. Hu, X. Wang, J. Adv. Res. 21, 25 (2020)

    Google Scholar 

  36. 36.

    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, K. Schwarz,WIEN2k Users Guide: An Augmented Planewave+Local Orbitals Program for Calculating Crystal Properties, Revised Edition WIEN2k 13.1 (Austria, Vienna University of Technology, 2013)

  37. 37.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  38. 38.

    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 121, 1187 (2004)

    ADS  Google Scholar 

  39. 39.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  40. 40.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  41. 41.

    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    ADS  Google Scholar 

  42. 42.

    F. Birch, J. Geophys. Res. B 91, 4949 (1986)

    ADS  Google Scholar 

  43. 43.

    M. Naseri, J. Jalilian, Mater. Res. Bull. 88, 49 (2017)

    Google Scholar 

  44. 44.

    M. Naseri, J. Jalilian, F. Parandin, K. Salehi, Phys. Lett. A 382, 2144 (2018)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. M. Hoat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatahi, N., Hoat, D.M., Laref, A. et al. 2D Hexagonal SnTe monolayer: a quasi direct band gap semiconductor with strain sensitive electronic and optical properties. Eur. Phys. J. B 93, 32 (2020). https://doi.org/10.1140/epjb/e2020-100543-6

Download citation

Keywords

  • Solid State and Materials