The influences of boron doping in various defect sites on the thermo-mechanical properties of armchair graphene nanoribbons

Abstract

In this study, the influences of boron (B) atom doping for various sites of Stone-Wales (SW) defects on the thermal conductivity (TC) and mechanical properties of armchair graphene nanoribbon (AGNR) are systematically examined at room temperature using molecular dynamics (MD) simulations. Firstly, the effects of SW defect and B doping with different concentrations on the TC and mechanical properties are investigated randomly. Additionally, it is observed that as SW defect and B doping exist together in AGNR, the effect of B doping on the TC and mechanical properties is far less than others. Secondly, the influences of four different B doping sites, which are located at the edge and center sites of SW defect, on the TC and mechanical properties of AGNR are examined. MD simulation results show that B doping in the central sites of SW defect indicates higher mechanical properties and TC than those in the edge sites of SW defect. In addition, B doping in the central sites of SW defect further improved the TC and mechanical properties of AGNR compared to random SW defect with B doping. On the other hand, B doping in the edge sites of defective AGNR indicates lower TC and mechanical properties than those in random B doping in defective AGNR. The results of this study may be considered helpful for future works of thermal and mechanical management of AGNRs based nanodevices and to develop thermoelectric applications of AGNRs.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    ADS  Article  Google Scholar 

  2. 2.

    Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Nat. Mater. 9, 555 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science 324, 768 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, S. Roche, Phys. Rev. Lett. 101, 036808 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    R. Wang, C. Xu, J. Sun, L. Gao, Sci. Rep. 4, 7171 (2014)

    ADS  Article  Google Scholar 

  11. 11.

    X. Wang, Z. Zeng, H. Ahn, G. Wang, Appl. Phys. Lett. 95, 183103 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, ACS Nano 4, 1790 (2010)

    Article  Google Scholar 

  13. 13.

    B. Zheng, P. Hermet, L. Henrard, ACS Nano 4, 4165 (2010)

    Article  Google Scholar 

  14. 14.

    Z.H. Wen, X.C. Wang, S. Mao, Z. Bo, H. Kim, S.M. Cui, G.H. Lu, X.L. Feng, J.H. Chen, Adv. Mater. 24, 5610 (2012)

    Article  Google Scholar 

  15. 15.

    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)

    Article  Google Scholar 

  16. 16.

    B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Rémond, S.M.V. Allaei, Solid State Commun. 152, 261 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    A.E. Senturk, A.S. Oktem, A.E.S. Konukman, J. Mol. Model. 23, 247 (2017)

    Article  Google Scholar 

  18. 18.

    B. Mortazavi, S. Ahzi, Solid State Commun. 152, 1503 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    B. Mortazavi, S. Ahzi, Carbon 63, 460 (2013)

    Article  Google Scholar 

  20. 20.

    B. Mortazavi, S. Ahzi, V. Toniazzo, Y. Remond, Phys. Lett. A 376, 1146 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    A.E. Senturk, A.S. Oktem, A.E.S. Konukman, J. Mol. Model. 24, 43 (2018)

    Article  Google Scholar 

  22. 22.

    A.R. Setoodeh, H. Badjian, H.S. Jahromi, J. Mol. Model. 23, 2 (2017)

    Article  Google Scholar 

  23. 23.

    A.E. Senturk, A.S. Oktem, A.E.S. Konukman, J. Fac. Eng. Archit. Gazi Univ. 34, 69 (2019)

    Google Scholar 

  24. 24.

    J.J. Yeo, Z. Liu, T.Y. Ng, Nanotechnology 23, 385702 (2012)

    Article  Google Scholar 

  25. 25.

    B. Biel, X. Blase, F. Triozon, S. Roche, Phys. Rev. Lett. 102, 096803 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    B. Biel, X. Blase, F. Triozon, S. Roche, Nano Lett. 9, 2725 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    H. Zeng, J. Zhao, J.W. Wei, H.F. Hu, Eur. Phys. J. B 79, 335 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    ADS  Article  Google Scholar 

  29. 29.

    Accelrys Inc., Materials Studio, San Francisco, http://accelrys.com (2018)

  30. 30.

    L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    A. Kınacı, J.B. Haskins, C. Sevik, T. Çağin, Phys. Rev. B 86, 115410 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    ADS  Article  Google Scholar 

  33. 33.

    S. Nose, Mol. Phys. 52, 255 (1984)

    ADS  Article  Google Scholar 

  34. 34.

    D. Yang, F. Ma, Y. Sun, T. Hu, K. Xu, Appl. Surf. Sci. 258, 9926 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    D. Liu, P. Yang, X. Yuan, J. Guo, N. Liao, Phys. Lett. A 379, 810 (2015)

    Article  Google Scholar 

  36. 36.

    P.G. Klemens, Int. J. Thermophys. 22, 265 (2001)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alp Er S. Konukman.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senturk, A.E., Oktem, A.S. & Konukman, A.E.S. The influences of boron doping in various defect sites on the thermo-mechanical properties of armchair graphene nanoribbons. Eur. Phys. J. B 93, 121 (2020). https://doi.org/10.1140/epjb/e2020-10025-6

Download citation

Keywords

  • Solid State and Materials