Modulational instability and peak solitary wave in a discrete nonlinear electrical transmission line described by the modified extended nonlinear Schrödinger equation

Abstract

The present work describes the propagation of plane and peak solitary waves in a modified extended nonlinear Schrödinger (MENLS) equation that was earlier shown to govern the dynamics of modulated waves in a discrete nonlinear electrical transmission line (DNLETL). Firstly, the analytic expression for the modulational instability gain is found and the influence of wavenumber and wave amplitude on the gain is derived. It is predicted that they can be used to control the occurrence of modulation instability phenomenon in the network. Afterwards, using the MENLS equation, we show that this model of nonlinear electrical transmission line admits peak solitary wave for physically realistic parameters of the system. Direct numerical simulations are performed on the exact equations of the lattice and the obtained results are in very good agreement with the analytical predictions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T.B. Benjamin, J. Feir, J. Fluid Mech. 27, 417 (1967)

    ADS  Article  Google Scholar 

  2. 2.

    V. Zakharov, L. Ostrovsky, Physica D 238, 540 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    V. Bespalov, V. Talanov, ZhETF Pisma Redaktsiiu 3, 471 (1966)

    ADS  Google Scholar 

  4. 4.

    L.A. Ostrovskii, Sov. Phys. JETP 24, 797 (1969)

    ADS  Google Scholar 

  5. 5.

    E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J.M. Bilbault, M. Haelterman, Phys. Rev. A 54, 3519 (1996)

    ADS  Article  Google Scholar 

  6. 6.

    A. Hasegawa, Opt. Lett. 9, 288 (1984)

    ADS  Article  Google Scholar 

  7. 7.

    G. Millot, E. Seve, S. Wabnitz, M. Haelterman, JOSA B 15, 1266 (1998)

    ADS  Article  Google Scholar 

  8. 8.

    F.K. Abdullaev, S.A. Darmanyan, J. Garnier, Prog. Opt. 44, 303 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 1986

    ADS  Article  Google Scholar 

  10. 10.

    R. Malendevich, L. Jankovic, G.I. Stegeman, J.S. Aitchison, Opt. Lett. 26, 1879 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    H. Fang, R. Malendevich, R. Schiek, G.I. Stegeman, Opt. Lett. 25, 1786 (2000)

    ADS  Article  Google Scholar 

  12. 12.

    V.E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968)

    ADS  Article  Google Scholar 

  13. 13.

    D. Suter, T. Blasberg, Phys. Rev. A 48, 4583 (1993)

    ADS  Article  Google Scholar 

  14. 14.

    J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965)

    ADS  Article  Google Scholar 

  15. 15.

    S. Gatz, J. Herrmann, Opt. Lett. 23, 1176 (1998)

    ADS  Article  Google Scholar 

  16. 16.

    W. Krolikowski, O. Bang, N.I. Nikolov, D. Neshev, J. Wyller, J.J. Rasmussen, D. Edmundson, J. Opt. B: Quantum Semiclassical Opt. 6, S288 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. 4, 568 (1968)

    ADS  Article  Google Scholar 

  18. 18.

    A. Mohamadou, C. Latchio Tiofack, T.C. Kofané, Phys. Rev. E 82, 016601 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    S. Joo, A. Messiter, W. Schultz, J. Fluid Mech. 229, 135 (1991)

    ADS  Article  Google Scholar 

  20. 20.

    C. Kharif, R.A. Kraenkel, M. Manna, R. Thomas, J. Fluid Mech. 664, 138 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    F.B. Pelap, T.C. Kofané, N. Flytzanis, M. Remoissenet, J. Phys. Soc. Jpn. 70, 2568 (2001)

    ADS  Article  Google Scholar 

  22. 22.

    F.B. Pelap, M.M. Faye, J. Math. Phys. 46, 033502 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    E. Kengne, W. Liu, Phys. Rev. E 73, 026603 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    S.B. Yamgoué, F.B. Pelap, Phys. Lett. A 380, 2017 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    D. Yemélé, F. Kenmogné, Phys. Lett. A 373, 3801 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    F. Kenmogne, D. Yemélé, Phys. Rev. E 88, 043204 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    W. Królikowski, O. Bang, Phys. Rev. E 63, 016610 (2000)

    ADS  Article  Google Scholar 

  28. 28.

    O. Bang, W. Krolikowski, J. Wyller, J.J. Rasmussen, Phys. Rev. E 66, 046619 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    A. Parola, L. Salasnich, L. Reatto, Phys. Rev. A 57, R3180 (1998)

    ADS  Article  Google Scholar 

  30. 30.

    J. Wyller, W. Krolikowski, O. Bang, J.J. Rasmussen, Phys. Rev. E 66, 066615 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    W. Krolikowski, O. Bang, J.J. Rasmussen, J. Wyller, Phys. Rev. E 64, 016612 (2001)

    ADS  Article  Google Scholar 

  32. 32.

    P. Ndjoko, J.-M. Bilbault, S. Binczak, T. Kofane, Phys. Rev. E 85, 011916 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    D. Yemélé, P. Marquié, J.M. Bilbault, Phys. Rev. E 68, 016605 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    F.B. Pelap, M.M. Faye, J. Phys. Soc. Jpn. 76, 074602 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    A. Mohamadou, A. Kenfack-Jiotsa, T. Kofane, Chaos Soliton. Fract. 27, 914 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    L. Kavitha, M. Venkatesh, S. Dhamayanthi, D. Gopi, Chin. Phys. B 22, 129401 (2013)

    Article  Google Scholar 

  37. 37.

    J. Li, Z. Qiao, J. Math. Phys. 54, 123501 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    F. Kenmogne, G.B. Ndombou, D. Yemélé, A. Fomethe, Chaos Soliton. Fract. 75, 263 (2015)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francois Beceau Pelap.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deffo, G.R., Yamgoue, S.B. & Pelap, F.B. Modulational instability and peak solitary wave in a discrete nonlinear electrical transmission line described by the modified extended nonlinear Schrödinger equation. Eur. Phys. J. B 91, 242 (2018). https://doi.org/10.1140/epjb/e2018-90217-3

Download citation

Keywords

  • Statistical and Nonlinear Physics