Advertisement

Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems

  • Kumar Abhinav
  • Partha Guha
Regular Article

Abstract

Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Hasimoto, J. Fluid Mech. 51, 477 (1972) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    O. Krupková, J. Math. Phys. 38, 5098 (1997) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Kundu, J. Phys. A: Math. Theor. 41, 495201 (2008) and references therein CrossRefGoogle Scholar
  4. 4.
    R.J. Baxter, Exactly solved models in statistical mechanics (Academic Press, London, 1982) Google Scholar
  5. 5.
    C. Herring, C. Kittle, Phys. Rev. 81, 869 (1951) ADSCrossRefGoogle Scholar
  6. 6.
    M. Lakshmanan, Phys. Lett. A 61, 53 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    R. Balakrishnan, J. Phys. C: Solid State Phys. 15, L1305 (1982) ADSCrossRefGoogle Scholar
  8. 8.
    R. Balakrishnan, Phys. Lett. 92, 243 (1982) MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Balakrishnan, Physica D 16, 405 (1985) MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Balakrishnan, P. Guha, J. Math. Phys. 37, 3651 (1996) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. A 238, 204 (1956) ADSCrossRefGoogle Scholar
  12. 12.
    H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. A 238, 215 (1956) ADSCrossRefGoogle Scholar
  13. 13.
    I.L. Bekarevich, I.M. Khalatnikov, Sov. Phys. J. Exp. Theor. Phys. 13, 643 (1961) Google Scholar
  14. 14.
    B.K. Shivamoggi, Eur. Phys. J. B 86, 275 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Van Gorder, Phys. Rev. E 91, 053201 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    L D Faddeev, Leon Takhtajan, Hamiltonian methods in the theory of solitons (Springer-Verlag Berlin, Heidelberg, 2007) Google Scholar
  17. 17.
    K.W. Schwarz, Phys. Rev. B 31, 5782 (1985) ADSCrossRefGoogle Scholar
  18. 18.
    N. Papanicolaou, J. Phys. A: Math. Gen. 20, 3637 (1987) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Schneider, J. Differ. Equ. 147, 333 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    J.  Nian, arXiv:1611.04562 [hep-th] (2016)
  21. 21.
    K.  Abhinav, P. Guha, arXiv:1612.07499 [math-ph] (2016)
  22. 22.
    A. Kundu, Mod. Phys. Lett. A 10, 2955 (1995) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A.Yu. Volkov, Lett. Math. Phys. 39, 313 (1997) MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Fioravanti, M. Rossi, J. Phys. A 35, 3647 (2002) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBilkent UniversityÇankayaTurkey
  2. 2.S.N. Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations