Skip to main content
Log in

Hole pairing and ground state properties of high-T c superconductivity within the ttJV model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The ttJV model, one of the realistic models for studying high-T c cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large Vt. A superconducting phase emerges at 0 ≤ Vt ≤ 4J. Hole–hole correlation calculation also suggests that the two holes of the pair are either at |ij| = 1 or √2. Negative tt suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by Vt while d-(s-) wave susceptibility gets favored (suppressed) by tt. The charge gap shows a gapped behavior while a spin-gapless region exists at small Vt for finite tt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  2. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3709 (1988)

    ADS  Google Scholar 

  3. J. Hubbard, Proc. R. Soc. Lond. Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  4. F.C. Zhang et al., Supercond. Sci. Technol. 1, 36 (1988)

    Article  ADS  Google Scholar 

  5. T.K. Lee, S.P. Feng, Phys. Rev. B 38, 11809 (1988)

    Article  ADS  Google Scholar 

  6. S. Sorella et al., Phys. Rev. Lett. 88, 117002 (2002)

    Article  ADS  Google Scholar 

  7. T.K. Lee et al., Phys. Rev. Lett. 89, 279702 (2002)

    Article  Google Scholar 

  8. M. Calandra, S. Sorella, Phys. Rev. B 61, R11894 (2000)

    Article  ADS  Google Scholar 

  9. W. Putikka, M. Luchini, T.M. Rice, Phys. Rev. Lett. 68, 538 (1992)

    Article  ADS  Google Scholar 

  10. K. Haule, G. Kotliar, Europhys. Lett. 77, 27007 (2007)

    Article  ADS  Google Scholar 

  11. A. Himeda, T. Kato, M. Ogata, Phys. Rev. Lett. 88, 117001 (2002)

    Article  ADS  Google Scholar 

  12. M. Capello, M. Raczkowski, D. Poilblanc, Phys. Rev. B77, 224502 (2008)

    Article  ADS  Google Scholar 

  13. P. Corboz et al., Phys. Rev. Lett. 113, 046402 (2014)

    Article  ADS  Google Scholar 

  14. D.J. Scalapino, Handbook of high temperature superconductivity, edited by J.R. Schrieffer, J.B. Brooks (Springer, New York, 2007) (Chap. 13)

  15. R. Raimondi, J.H. Jefferson, L.F. Feiner, Phys. Rev. B 53, 8774 (1996)

    Article  ADS  Google Scholar 

  16. K. Tanaka et al., Phys. Rev. 70, 092503 (2004)

    Article  Google Scholar 

  17. H. Yokoyama et al., J. Phys. Soc. Jpn 82, 014070 (2013)

    Google Scholar 

  18. O. Parcollet, G. Biroli, G. Kotliar, Phys. Rev. Lett. 92, 226402 (2004)

    Article  ADS  Google Scholar 

  19. L. Spanu et al., Phys. Rev. B 77, 024510 (2008)

    Article  ADS  Google Scholar 

  20. C.T. Shih et al., Phys. Rev. B 70, 220502 (2004)

    Article  ADS  Google Scholar 

  21. E. Pavirini et al Phys. Rev. Lett. 87, 047003 (2001)

    Article  ADS  Google Scholar 

  22. C.T. Shih et al., Phys. Rev. Lett. 92, 227002 (2004)

    Article  ADS  Google Scholar 

  23. N.S. Mondal, N.K. Ghosh, Pramana-J. Phys. 74, 115 (2010)

    Article  ADS  Google Scholar 

  24. N.S. Mondal, N.K. Ghosh, Pramana-J. Phys. 74, 1009 (2010)

    Article  ADS  Google Scholar 

  25. S. Nath, N.K. Ghosh, J. Supercond. Nov. Magn. 27, 1347 (2014)

    Article  Google Scholar 

  26. S. Nath, N.K. Ghosh, J. Supercond. Nov. Magn. 27, 2871 (2014)

    Article  Google Scholar 

  27. J.D. Sau, S. Sachdev, Phys. Rev. B 89, 075129 (2014)

    Article  ADS  Google Scholar 

  28. A. Allais, J. Bauer, S. Sachdev, Phys. Rev. B 90, 155114 (2014)

    Article  ADS  Google Scholar 

  29. R. Eder, J. van den Brink, G.A. Sawatzky, Phys. Rev. B 54, R732 (1996)

    Article  ADS  Google Scholar 

  30. K. Rościszewski, A.M. Oleś, J. Phys: Condens. Matter 15, 8363 (2003)

    ADS  Google Scholar 

  31. M. Calandra, J. Merino, R.H. McKenzie, Phys. Rev. B 66, 195102 (2002)

    Article  ADS  Google Scholar 

  32. E. Dagotto, J. Riera, Phys. Rev. B 46, 12084 (1992)

    Article  ADS  Google Scholar 

  33. M. Bejas, A. Greco, H. Yamase, Phys. Rev B 86, 224509 (2012)

    Article  ADS  Google Scholar 

  34. R.B. Laughlin, Phys. Rev. Lett. 112, 017004 (2012)

    Article  ADS  Google Scholar 

  35. R.B. Laughlin, Phys. Rev. B 89, 035134 (2014)

    Article  ADS  Google Scholar 

  36. Z. Yu et al., Phys. Rev. B 96, 045110 (2017)

    Article  ADS  Google Scholar 

  37. P.A. Leeet al., Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  38. W.M. Que, S.P. Bowen, C.D. Williams, J. Phys. C: Solid State Phys. 20, L835 (1989)

    Article  Google Scholar 

  39. J.A. Riera, Phys. Rev. B 40, 833 (1989)

    Article  ADS  Google Scholar 

  40. Z. Zhu et al., Sci. Rep. 4, 5419 (2014)

    Article  Google Scholar 

  41. T. Koretsune, M. Ogata, Phys. Rev. B 72, 134513 (2005)

    Article  ADS  Google Scholar 

  42. S. Daul, R.M. Noack, Phys. Rev. B 61, 1646 (2000)

    Article  ADS  Google Scholar 

  43. Y. Hasegawa, D. Poilblanc, Phys. Rev. B 40, 9035 (1989)

    Article  ADS  Google Scholar 

  44. S.M. Hayden et al., Phys. Rev. Lett. 67, 3622 (1991)

    Article  ADS  Google Scholar 

  45. S. Zhou, Z. Wang, Phys. Rev. B 70, 020501 (2004)

    Article  ADS  Google Scholar 

  46. S. Raghu et al., Phys. Rev. B 85, 024516 (2012)

    Article  ADS  Google Scholar 

  47. E. Plekhanov, S. Sorella, M. Fabrizio, Phys. Rev. Lett. 90, 187004 (2003)

    Article  ADS  Google Scholar 

  48. D. Sénéchal et al., Phys. Rev. B 87, 075123 (2013)

    Article  ADS  Google Scholar 

  49. M.A. Kastner et al., Rev. Mod. Phys. 70, 897 (1998)

    Article  ADS  Google Scholar 

  50. S. Raghu et al., Phys. Rev. B 85, 024516 (2012)

    Article  ADS  Google Scholar 

  51. J.A. Riera, A.P. Young, Phys. Rev. B 39, 9697 (1989)

    Article  ADS  Google Scholar 

  52. T. Koretsune, M. Ogata, J. Phys. Soc. Jpn 74, 1390 (2005)

    Article  ADS  Google Scholar 

  53. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  54. V. Barzykin, D. Pines, Adv. Phys. 58, 1 (2009)

    Article  ADS  Google Scholar 

  55. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012), references therein

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadip Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K., Pal, P., Nath, S. et al. Hole pairing and ground state properties of high-T c superconductivity within the ttJV model. Eur. Phys. J. B 91, 64 (2018). https://doi.org/10.1140/epjb/e2018-80488-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80488-y

Keywords

Navigation