Asymptotics of work distributions in a stochastically driven system
- 113 Downloads
- 1 Citations
Abstract
We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system – the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (β → ∞) limit.
Keywords
Statistical and Nonlinear PhysicsReferences
- 1.U. Seifert, Rep. Progr. Phys. 75, 126001 (2012) ADSCrossRefGoogle Scholar
- 2.G.E. Crooks, Phys. Rev. E 61, 2361 (2000) ADSCrossRefGoogle Scholar
- 3.C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997) ADSCrossRefGoogle Scholar
- 4.C. Jarzynski, Phys. Rev. E 56, 5018 (1997) ADSCrossRefGoogle Scholar
- 5.R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003) ADSCrossRefGoogle Scholar
- 6.R. van Zon, E.G.D. Cohen, Phys. Rev. E 69, 056121 (2004) ADSCrossRefGoogle Scholar
- 7.R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003) ADSCrossRefGoogle Scholar
- 8.R. van Zon, S. Ciliberto, E.G.D. Cohen, Phys. Rev. Lett. 92, 130601 (2004) ADSCrossRefGoogle Scholar
- 9.D. Nickelsen, A. Engel, Eur. Phys. J. B 82, 207 (2011) ADSCrossRefGoogle Scholar
- 10.T. Speck, J. Phys. A: Math. Theor. 44, 305001 (2011) ADSMathSciNetCrossRefGoogle Scholar
- 11.C. Jarzynski, Phys. Rev. E 56, 5018 (1997) ADSCrossRefGoogle Scholar
- 12.D.M. Carberry, J.C. Reid, G.M. Wang, E.M. Sevick, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 92, 140601 (2004) ADSCrossRefGoogle Scholar
- 13.C. Kwon, J.D. Noh, H. Park, Phys. Rev. E 88, 062102 (2013) ADSCrossRefGoogle Scholar
- 14.A. Ryabov, M. Dierl, P. Chvosta, M. Einax, P. Maass, J. Phys. A: Math. Theor. 46, 075002 (2013) ADSCrossRefGoogle Scholar
- 15.B. Saha, S. Mukherji, Eur. Phys. J. B 88, 146 (2015) ADSCrossRefGoogle Scholar
- 16.H. Touchette, Phys. Rep. 478, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
- 17.A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013) ADSCrossRefGoogle Scholar
- 18.S. Sabhapandit, EPL 96, 20005 (2011) ADSCrossRefGoogle Scholar
- 19.L.F. Shampine, M.W. Reichelt, J. Kierzenka, Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c, Available at www.mathworks.com/bvp_tutorial
- 20.V. Holubec, M. Dierl, M. Einax, P. Maass, P. Chvosta, A. Ryabov, Phys. Scr. 2015, 014024 (2015) CrossRefGoogle Scholar
- 21.D. Nickelsen, A. Engel, Phys. Scr. 86, 058503 (2012) CrossRefGoogle Scholar
- 22.G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014) ADSCrossRefGoogle Scholar
- 23.P. Pietzonka, F. Ritort, U. Seifert, Phys. Rev. E 96, 012101 (2017) ADSCrossRefGoogle Scholar
- 24.R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals. International series in pure and applied physics (McGraw-Hill, Maidenhead, Berkshire, 1965) Google Scholar
- 25.L.S. Schulman, Techniques and applications of path integration (Wiley, New York, 1996) Google Scholar
- 26.K. Kirsten, A.J. McKane, Ann. Phys. 308, 502 (2003) ADSCrossRefGoogle Scholar
- 27.G.M. Falco, A.A. Fedorenko, I.A. Gruzberg, J. Phys. A: Math. Theor. 50, 485201 (2017) CrossRefGoogle Scholar
- 28.A. Engel, Phys. Rev. E 80, 021120 (2009) ADSCrossRefGoogle Scholar
- 29.K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997) ADSCrossRefGoogle Scholar
- 30.K. Sekimoto, Progr. Theor. Phys. Suppl. 130, 17 (1998) ADSCrossRefGoogle Scholar
- 31.S. Machlup, L. Onsager, Phys. Rev. 91, 1512 (1953) ADSCrossRefGoogle Scholar
- 32.L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953) ADSCrossRefGoogle Scholar
- 33.R. Courant, D. Hilbert, in Methods of mathematical physics (Wiley, New York, 1953), Vol. 1 Google Scholar
- 34.K. Kirsten, P. Loya, Am. J. Phys. 76, 60 (2008) ADSCrossRefGoogle Scholar
- 35.C. Kwon, J.D. Noh, H. Park, Phys. Rev. E 83, 061145 (2011) ADSCrossRefGoogle Scholar
- 36.J.R. Gomez-Solano, L. Bellon, A. Petrosyan, S. Ciliberto, EPL 89, 60003 (2010) ADSCrossRefGoogle Scholar
- 37.V.Y. Chernyak, M. Chertkov, C. Jarzynski, J. Stat. Mech.: Theory Exp. 2006, P08001 (2006) CrossRefGoogle Scholar
- 38.M. Chaichian, A. Demichev, Path integrals in physics: volume I: Stochastic processes and quantum mechanics (Institute of Physics Publishing, Bristol and Philadelphia, 2001) Google Scholar
- 39.M. Doi, J. Phys. A: Math. Gen. 9, 1465 (1976) ADSCrossRefGoogle Scholar
- 40.M. Doi, J. Phys. A: Math. Gen. 9, 1479 (1976) ADSCrossRefGoogle Scholar
- 41.L. Peliti, J. Phys. 46, 1469 (1985) MathSciNetCrossRefGoogle Scholar
Copyright information
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.