A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

  • Amina Benallou
  • Baghdad Hadri
  • Juan Martinez-Vega
  • Nour El Islam BoukorttEmail author
Regular Article


The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.


Solid State and Materials 


  1. 1.
    H. Klauk. Organic electronics II: more materials and applications (Springer-Wiley-VCH Verlag, Weinheim, Germany, 2012) Google Scholar
  2. 2.
    U. Nandi, D. Jana, D. Talukdar, Prog. Mater. Sci. 71, 1 (2015) CrossRefGoogle Scholar
  3. 3.
    J. Izdebska, in Printing on polymers fundamentals and applications (Elsevier, 2016), pp. 353–370 Google Scholar
  4. 4.
    M. Joshi, U. Chatterjee, in Advanced composite materials for aerospace engineering processing, properties and applications (Elsevier, 2016), pp. 241–264 Google Scholar
  5. 5.
    S.K. Manirul Haque, J.A. Ardila Rey, A.A. Masúd, Y. Umar, R. Albarracin, Electrical properties of different polymeric materials and their applications: the influence of electric field, in Properties and applications of polymer dielectrics, edited by B. Du (IntechOpen, 2017) Google Scholar
  6. 6.
    N. Lahoud, L. Boudou, J. Martinez-Vega, A multi-dimensional model to describe the ageing process of polymers used for electrical insulation, in Proc. IEEE Int. Conf. Sol. Dielectr., Winchester, UK (2007), pp. 79–81 Google Scholar
  7. 7.
    D. Yin, R. Meng, X. Duan, Y. Li, Physica A 404, 1 (2014) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Palit, M. Alam, IEEE Trans. Device Mater. Reliab. 15, 308 (2015) CrossRefGoogle Scholar
  9. 9.
    J. Martinez-Vega, Matériaux diélectriques pour le génie électrique tome 1: propriétés, vieillissement et modélisation. Traité EGEM, série Génie électrique (Lavoisier, 2007) Google Scholar
  10. 10.
    K. Wu, L.A. Dissado, Appl. Phys. Lett. 85, 514 (2004) Google Scholar
  11. 11.
    B. Hadri, P.R. Mamy, J.J. Martinez-Vega, M. Mostefa, Solid State Commun. 39, 35 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    B. Hadri, J. Martinez-Vega, J. Eur. Electr. Eng. 11, 409 (2008) Google Scholar
  13. 13.
    D. Stauffer, Introduction to percolation theory (Taylor and Francis, e-library, 2010) Google Scholar
  14. 14.
    A.L. Efros, Physics and geometry of disorder percolation theory (Mir Publishers, Moscow, 1986) Google Scholar
  15. 15.
    A.A. Saberi, Phys. Rep. 578, 1 (2015) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    G.C. Psarras, Appl. Sci. Manuf. 37, 1545 (2006) CrossRefGoogle Scholar
  17. 17.
    V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971) ADSCrossRefGoogle Scholar
  18. 18.
    F. Ladieu, M. Sanquer, Ann. Phys. Fr. 21, 267 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    N. Lahoud, Modélisation du vieillissement des isolants organiques sous contraintes électrique, Application à la fiabilité des matériaux, Ph.D. dissertation, University Paul Sabatier, Toulouse, France, 2009 Google Scholar
  20. 20.
    L.A. Dissado, G. Mazzanti, G.C. Montanari, IEEE Trans. Dielectr. Electr. Insul. 4, 496 (1997) CrossRefGoogle Scholar
  21. 21.
    B.I. Shklovskii, A.L. Efros, Electronic properties of doped semiconductors (Springer, Heidelberg, 1984) Google Scholar
  22. 22.
    D.I. Aladashvili, Z.A. Adamiya, K.G. Lavadovskii, E. Levin, B.I. Shkloskii, in Hopping and related phenomena (World Scientific, 1990), pp. 283–297 Google Scholar
  23. 23.
    T.M. Behnam, M. Mohsen, M. Ganjeh-Ghazvini, Physica A 460, 304 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    R. Veysseyre, Aide-mémoire Statistique et probabilités pour l’ingénieur, 2nd edn. (Dunod, Paris, France, 2006) Google Scholar
  25. 25.
    K. Binder, D.W. Heermann, Monte Carlo simulation in statistical physics: an introduction solid state sciences (Springer, 2002) Google Scholar
  26. 26.
    V. Gorshkov, V. Privman, S. Libert, Physica A 462, 207 (2016) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Amina Benallou
    • 1
  • Baghdad Hadri
    • 2
  • Juan Martinez-Vega
    • 3
  • Nour El Islam Boukortt
    • 4
    • 5
    Email author
  1. 1.ECP3M Laboratory, Department of Electrical Engineering, University of Abdelhamid Ibn BadisMostaganemAlgeria
  2. 2.Electromagnetism and Guided Optic Laboratory, Department of Electrical Engineering, University of Abdelhamid Ibn BadisMostaganemAlgeria
  3. 3.LAPLACE Laboratory University of Toulouse, UPSToulouseFrance
  4. 4.Dipartimento Di Scienze Matematiche E Informatiche, Scienze Fisiche E Scienze Della Terra, University of MessinaMessinaItaly
  5. 5.Electrical Engineering Department, College of Engineering & Petroleum Kuwait UniversityKuwaitKuwait

Personalised recommendations