Skip to main content
Log in

Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3⋅6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent “dead layer”, which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which “awakened” the “dead layer” on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.A. Pankhurst, R.J. Pollard, J. Phys. Condens. Matter 5, 8487 (1993)

    Article  ADS  Google Scholar 

  2. S. Laurent, D. Forge, M. Port, A. Roch, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)

    Article  Google Scholar 

  3. E. Tronc, A. Ezzir, R. Cherkaoui, C. Chañac, M. Nogués, H. Kachkachi, D. Fiorani, A.M. Testa, J.M. Grenéche, J.P. Jolivet, J. Magn. Magn. Mater. 221, 63 (2000)

    Article  ADS  Google Scholar 

  4. J. Negus, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Mumoz, M.D. Baró, Phys. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  5. A. López-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogués, Phys. Rep. 553, 1 (2015)

    Article  ADS  Google Scholar 

  6. H. Kachkachi, A. Ezzir, M. Nogués, E. Tronc, Eur. Phys. J. B 14, 681 (2000)

    Article  ADS  Google Scholar 

  7. Z.X. Tang, C.M. Soresen, K.J. Klabude, G.C. Hadjipanayis, J. Appl. Phys. 69, 5279 (1991)

    Article  ADS  Google Scholar 

  8. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  9. Q.A. Pankhurst, A.Y. Matínez, L.F. Barquin, Phys. Rev. B 69, 212401 (2004)

    Article  ADS  Google Scholar 

  10. M. Blanco-Mantecon, K. O’Grady, J. Magn. Magn. Mater. 296, 124 (2006)

    Article  ADS  Google Scholar 

  11. M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin, V.G. Harris, Int. Mater. Rev. 49, 125 (2004)

    Article  Google Scholar 

  12. M.P. Sharrock, IEEE Trans. Magn. 36, 2420 (2000)

    Article  ADS  Google Scholar 

  13. C. Sudakar, T.R.N. Kutty, J. Magn. Magn. Mater. 279, 363 (2004)

    Article  ADS  Google Scholar 

  14. J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)

    Google Scholar 

  15. B.L. Cushing, V.L. Kolesnichenko, J. O’Connor, Chem. Rev. 104, 3893 (2004)

    Article  Google Scholar 

  16. H. Mao, J. Li, L.L. Chen, Y.Q. Lin, X.D. Liu, J.M. Li, X.M. Gong, D.C. Li, Micro Nano Lett. 9, 782 (2014)

    Article  Google Scholar 

  17. J.M. Li, J. Li, L.L. Chen, Y.Q. Lin, X.D. Liu, X.M. Gong, D.C. Li, J. Magn. Magn. Mater. 274, 157 (2015)

    Article  ADS  Google Scholar 

  18. J.M. Li, J. Li, H. Mao, Y.Q. Lin, J. Nanofluids 5, 42 (2016)

    Article  Google Scholar 

  19. R .Arulmurgan, G. Vaidynathan, S. Sendhilnathan, B. Jayadevan, Physica B 363, 225 (2005)

    Article  ADS  Google Scholar 

  20. C.G. Grangvist, R.A. Buhraman, J. Appl. Phys. 47, 2200 (1976)

    Article  ADS  Google Scholar 

  21. T. Sato, T. Iijima, M. Seki, N. Ingaki, J. Magn. Magn. Mater. 65, 252 (1987)

    Article  ADS  Google Scholar 

  22. J. Li, Y.Q. Lin, X.D. Liu, Q.M. Zhang, H. Miao, T.Z. Zhang, B.C. Wen, Phase Trans. 84, 49 (2011)

    Article  Google Scholar 

  23. S. Taketomi, Jordan J. Phys. 4, 1 (2011)

    Google Scholar 

  24. A.E. Berkowitz, J.A. Lahut, I.S. Jacobs, L.M. Levison, D.W. Forester, Phys. Rev. Lett. 34, 594 (1975)

    Article  ADS  Google Scholar 

  25. R. Kötitz, P.C. Fannin, L. Tranhms, J. Magn. Magn. Mater. 149, 42 (1995)

    Article  ADS  Google Scholar 

  26. R. Frison, G. Cernuto, A. Cervellino, O. Zaharko, G.M. Colonna, A. Gualiardi, N. Massiocchi, Chem. Mater. 25, 4820 (2013)

    Article  Google Scholar 

  27. E. Hasmonay, E. Dubois, J.-C. Bacri, R. Perzynski, Y.L. Raikher, V.I. Stepanov, Eur. Phys. J. B 5, 859 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., He, Z., Mao, H. et al. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles. Eur. Phys. J. B 90, 227 (2017). https://doi.org/10.1140/epjb/e2017-80264-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80264-7

Keywords

Navigation