Advertisement

Memory-function conductivity formula and transport coefficients in underdoped cuprates

  • Ivan Kupčić
  • Ivan Jedovnicki
Regular Article
  • 60 Downloads

Abstract

The two-band memory-function conductivity formula is derived from the quantum kinetic equation in the pseudogap state of underdoped cuprates. The conduction electrons are described by using the adiabatic version of the nested Fermi liquid model, and the effects of Mott correlations are taken into account phenomenologically. The linear dependence of the low-temperature effective number of conduction electrons on the doping level δ (for not too large δ) is found to be in agreement with experimental observation. The momentum distribution function turns out to play an important role in describing temperature effects. The closing of the antiferromagnetic pseudogap at temperatures of the order of room temperature is shown to be a direct consequence of a relatively large width of the quasiparticle peak in this distribution function. The coupling of conduction electrons to external magnetic fields is included in the two-band transport equations in the usual semiclassical way. It is shown that the low-temperature Hall number is proportional to δ as well (again for not too large δ) and that it exhibits singular behaviour when the Fermi surface changes from the hole-like shape into the electron-like shape.

Keywords

Solid State and Materials 

References

  1. 1.
    D.B. Tanner, F. Gao, K. Kamarás, H.L. Liu, M.A. Quijada, D.B. Romero, Y.-D. Yoon, A. Zibold, H. Berger, G. Margaritondo, L. Forró, R.J. Kelly, M. Onellion, G. Cao, J.E. Crow, O. Beom-Hoan, J.T. Markert, J.P. Rice, D.M. Ginsberg, Th. Wolf, Physica C 341–348, 2193 (2000)CrossRefGoogle Scholar
  2. 2.
    V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)CrossRefADSGoogle Scholar
  3. 3.
    N. Plakida, High-Temperature Cuprate Supercoductors (Springer-Verlag, Berlin, 2010)Google Scholar
  4. 4.
    S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima, Phys. Rev. B 43, 7942 (1991)CrossRefADSGoogle Scholar
  5. 5.
    M.C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D.A. Bonn, R. Liang, W.N. Hardy, Phys. Rev. B 57, 6090 (1998)CrossRefADSGoogle Scholar
  6. 6.
    T. Yoshida, X.J. Zhou, K. Tanaka, W.L. Yang, Z. Hussain, Z.-X. Shen, A. Fujimori, S. Sahrakorpi, M. Lindroos, R.S. Markiewicz, A. Bansil, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Phys. Rev. B 74, 224510 (2006)CrossRefADSGoogle Scholar
  7. 7.
    A. Kanigel, M.R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H.M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z.Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, J.C. Campuzano, Nat. Phys. 2, 447 (2006)CrossRefGoogle Scholar
  8. 8.
    X.J. Zhou, T. Cuk, T. Devereaux, N. Nagaosa, Z.-X. Shen, in Handbook of High-Temperature Superconductivity, edited by J.R. Schrieffer, J.S. Brooks (Springer, New York, 2007), p. 87Google Scholar
  9. 9.
    J.R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964)Google Scholar
  10. 10.
    A.A. Abrikosov, Fundamentals of the Theory of Metals (Nort-Holland, Amsterdam, 1988)Google Scholar
  11. 11.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, New York, 1976)Google Scholar
  12. 12.
    T.P. Devereaux, R. Hackl, Rev. Mod. Phys. 79, 175 (2007)CrossRefADSGoogle Scholar
  13. 13.
    I. Kupčić, S. Barišić, Phys. Rev. B 75, 094508 (2007)CrossRefADSGoogle Scholar
  14. 14.
    J. Ruvalds, A. Virosztek, Phys. Rev. B 43, 5498 (1991)CrossRefADSGoogle Scholar
  15. 15.
    P. Monthoux, D. Pines, Phys. Rev. B 47, 6069 (1993)CrossRefADSGoogle Scholar
  16. 16.
    D.K. Sunko, S. Barišić, Eur. Phys. J. B 46, 269 (2005)CrossRefADSGoogle Scholar
  17. 17.
    D. Bergeron, Y. Hankevych, B. Kyung, A.-M.S. Tremblay, Phys. Rev. B 84, 085128 (2011)CrossRefADSGoogle Scholar
  18. 18.
    J.R. Schrieffer, X.G. Wen, S.C. Zhang, Phys. Rev. B 39, 11663 (1989)CrossRefADSGoogle Scholar
  19. 19.
    J. Friedel, M. Kohmoto, Eur. Phys. J. B 30, 427 (2002)CrossRefADSGoogle Scholar
  20. 20.
    S. Chakravarty, C. Nayak, S. Tewari, Phys. Rev. B 68, 100504(R) (2003)CrossRefADSGoogle Scholar
  21. 21.
    I. Kupčić, Physica C 391, 251 (2003)CrossRefADSGoogle Scholar
  22. 22.
    S.I. Mirzaei, D. Stickler, J.N. Hancock, C. Berthod, A. Georges, E. van Heumen, M.K. Chan, X. Zhao, Y. Li, M. Greven, N. Barišić, D. van der Marel, Proc. Natl. Acad. Sci. USA 110, 5774 (2013)CrossRefADSGoogle Scholar
  23. 23.
    S. Ono, S. Komiya, Y. Ando, Phys. Rev. B 75, 024515 (2007)CrossRefADSGoogle Scholar
  24. 24.
    I. Kupčić, Phys. Rev. 91, 205428 (2015)CrossRefGoogle Scholar
  25. 25.
    I. Kupčić, G. Nikšić, Z. Rukel, D. Pelc, Phys. Rev. B 94, 075434 (2016)CrossRefADSGoogle Scholar
  26. 26.
    I. Kupčić, Z. Rukelj, S. Barišić, J. Phys.: Condens. Matter 25, 145602 (2013)ADSGoogle Scholar
  27. 27.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, New York, 1975)Google Scholar
  28. 28.
    I.E. Dzyaloshinskii, A.I. Larkin, Zh. Eksp. Teor. Fiz. 65, 411 (1973)Google Scholar
  29. 29.
    I.E. Dzyaloshinskii, A.I. Larkin, Sov. Phys. JETP 38, 202 (1974)ADSGoogle Scholar
  30. 30.
    G.D. Mahan, Many-particle Physics (Plenum Press, New York, 1990)Google Scholar
  31. 31.
    I. Kupčić, Phys. Rev. 95, 035403 (2017)CrossRefGoogle Scholar
  32. 32.
    I. Kupčić, Phys. Rev. 90, 205426 (2014)CrossRefGoogle Scholar
  33. 33.
    P.A. Lee, T.M. Rice, P.W. Anderson, Solid State Commun. 14, 703 (1974)CrossRefADSGoogle Scholar
  34. 34.
    A. Bjeliš, S. Barišić, J. Phys. Lett. 36, L169 (1975)CrossRefADSGoogle Scholar
  35. 35.
    S.A. Brazovskii, I.E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 71, 2338 (1976)Google Scholar
  36. 36.
    S.A. Brazovskii, I.E. Dzyaloshinskii, Sov. Phys.–JETP 44, 1233 (1976)ADSGoogle Scholar
  37. 37.
    R.H. McKenzie, Phys. Rev. B 52, 16428 (1995)CrossRefADSGoogle Scholar
  38. 38.
    I. Kupčić, Z. Rukelj, S Barišić, J. Phys.: Condens. Matter 26, 195601 (2014)Google Scholar
  39. 39.
    J.M. Tranquada, in Handbook of High-Temperature Superconductivity, edited by J.R. Schrieffer, J.S. Brooks (Springer, New York, 2007), p. 257Google Scholar
  40. 40.
    M.V. Sadovskii, Zh. Eksp. Teor. Fiz. 66, 1720 (1973)Google Scholar
  41. 41.
    M.V. Sadovskii, Sov. Phys.–JETP 39, 845 (1974)ADSGoogle Scholar
  42. 42.
    M.V. Sadovskii, Zh. Eksp. Teor. Fiz. 77, 2070 (1979)Google Scholar
  43. 43.
    M.V. Sadovskii, Sov. Phys.–JETP 50, 989 (1979)ADSGoogle Scholar
  44. 44.
    H. Kontani, Rep. Prog. Phys. 71, 1 (2008)CrossRefGoogle Scholar
  45. 45.
    Ž. Bonačić Lošić, P. Županovic, A. Bjeliš, J. Phys.: Condens. Matter 18, 3655 (2006)ADSGoogle Scholar
  46. 46.
    E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, Phys. Rev. Lett. 87, 047003 (2001)CrossRefADSGoogle Scholar
  47. 47.
    Y. Ando, S. Komiya, K. Segawa, Y. Kurita, Phys. Rev. Lett. 93, 267001 (2004)CrossRefADSGoogle Scholar
  48. 48.
    J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1972)Google Scholar
  49. 49.
    H. Kontani, K. Kanki, K. Ueda, Phys. Rev. B 59, 14723 (1999)CrossRefADSGoogle Scholar
  50. 50.
    P.M. Platzman, P.A. Wolff, Waves and Interactions in Solid State Plasmas (Academic Press, New York, 1973)Google Scholar
  51. 51.
    N.P. Ong, Phys. Rev. B 43, 193 (1991)CrossRefADSGoogle Scholar
  52. 52.
    D. Pines, P. Noziéres, The Theory of Quantum Liquids I (Addison-Wesley, New York, 1989)Google Scholar
  53. 53.
    G. Nikšić, I. Kupčić, O.S. Barišić, D.K. Sunko, S. Barišić, J. Supercond. Nov. Magn. 27, 969 (2014)CrossRefGoogle Scholar
  54. 54.
    L.P. Gor’kov, G.B. Teitel’baum, Phys. Rev. Lett. 97, 247003 (2006)CrossRefADSGoogle Scholar
  55. 55.
    I. Kupčić, Physica B 344, 27 (2004)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Science, University of ZagrebZagrebCroatia

Personalised recommendations