First-principles investigation of the equation of state and elastic properties of perovskite-type SrW(O,N)3 under hydrostatic pressures up to 139 GPa

  • Ehsan Zahedi
  • Mirabbos Hojamberdiev
Regular Article


Pressure dependence of the structural and elastic properties of perovskite-type cubic SrWO2.05N0.95 was studied using firstprinciples density functional theory (DFT) utilizing the plane wave pseudopotential and the exchange-correlation functionals within the generalized gradient approximation. The estimated bulk modulus and its pressure derivative values from the PV data fitted to the third-order Birch-Murnaghan equation of state were close to the data obtained from the independent elastic constants. Based on the generalized Born stability criteria, SrWO2.05N0.95 is mechanically stable up to 139 GPa. The influence of hydrostatic pressure (0 to 139 GPa) on the bulk modulus, shear modulus, Young’s modulus, Pugh’s modulus ratio, Poisson’s ratio, Vickers hardness, sound velocities, Debye temperature, Debye-Grüneisen parameter, minimum thermal conductivity and elastic anisotropy of SrWO2.05N0.95 was particularly studied in detail. It was found that SrWO2.05N0.95 is a ductile and hard solid with large bulk, shear and Young’s modulus and displays an extraordinary low thermal conductivity. Since there are not any experimental or theoretical data available for comparison the results of the present study have revealed an important fundamental information about the elastic properties of perovskite-type cubic SrWO2.05N0.95 for future experimental studies.


Computational Methods 


  1. 1.
    W. Li, A. Gurlo, R. Riedel, E. Ionescu, Z. Anorg. Allg. Chem. 641, 1533 (2015)CrossRefGoogle Scholar
  2. 2.
    I.D. Fawcett, K.V. Ramanujachary, M. Greenblatt, Mater. Res. Bull. 32, 1565 (1997)CrossRefGoogle Scholar
  3. 3.
    W. Li, D. Li, X. Gao, A. Gurlo, S. Zander, P. Jones, A. Navrotsky, Z. Shen, R. Riedel, E. Ionescu, Dalton Trans. 44, 8238 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Li, E. Ionescu, R. Riedel, A. Gurlo, J. Mater. Chem. A 1, 12239 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Kubota, K. Domen, Electrochem. Soc. Inter. 22, 57 (2013)Google Scholar
  6. 6.
    K. Kawashima, M. Hojamberdiev, H. Wagata, E. Zahedi, K. Yubuta, K. Domen, K. Teshima, J. Catal. 344, 29 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Li, D. Li, A. Gurlo, Z. Shen, R. Riedel, E. Ionescu, J. Eur. Ceram. Soc. 35, 3273 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Marchand, P. Antoine, P. L’Haridon, Y. Laurent, European Patent, Pub. No EP0286503 A1 (1988)Google Scholar
  9. 9.
    M.T. Weller, S.J. Skinner, Int. J. Inorg. Mater. 2, 463 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Yashima, U. Fumi, H. Nakano, K. Omoto, J.R. Hester, J. Phys. Chem. C 117, 18529 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61, 7877 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)Google Scholar
  13. 13.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 102, 039902 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 133 (1997)CrossRefGoogle Scholar
  22. 22.
    F. Birch, Phys. Rev. 71, 809 (1947)ADSCrossRefGoogle Scholar
  23. 23.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)ADSCrossRefGoogle Scholar
  24. 24.
    F.W. Hehl, Y. Itin, J. Elast. 66, 185 (2002)CrossRefGoogle Scholar
  25. 25.
    L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51, 17431 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, UK, 1954)Google Scholar
  27. 27.
    J. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Haines, J.M. Léger, G. Bocquillon, Ann. Rev. Mater. Res. 31, 1 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    S.F. Pugh, Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  31. 31.
    X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)CrossRefGoogle Scholar
  32. 32.
    D.M. Teter, MRS Bull. 23, 22 (1998)CrossRefGoogle Scholar
  33. 33.
    Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Ding, Physica B 407, 2190 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A. Authier, International Tables for Crystallography, 1st edn (Kluwer Academic Publishers, The Netherlands, 2003)Google Scholar
  36. 36.
    S. Goumri-Said, H. Ozisik, E. Deligoz, M.B. Kanoun, Semicond. Sci. Technol. 28, 085005 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    R. Hao, X. Zhang, J. Qin, S. Zhang, J. Ning, N. Sun, M. Ma, R. Liu, RSC Adv. 5, 36779 (2016)CrossRefGoogle Scholar
  38. 38.
    S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    J.F. Nye, Physical Properties of Crystals. Their Representation by Tensors and Matrices (Oxford Science Publications, Great Britain, 2006)Google Scholar
  40. 40.
    B. Xiao, J. Feng, C.T. Zhou, Y.H. Jiang, R. Zhou, J. Appl. Phys. 109, 023507 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    D.L. Anderson, Theory of the Earth (Blackwell Scientific Publications, Boston, 1989)Google Scholar
  42. 42.
    O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, UK, 2000)Google Scholar
  44. 44.
    J. Feng, B. Xiao, R. Zhou, W. Pan, D.R. Clarke, Acta Mater. 60, 3380 (2012)CrossRefGoogle Scholar
  45. 45.
    D.G. Cahill, R.O. Pohl, Ann. Rev. Phys. Chem. 39, 93 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    D.R. Clarke, Surf. Coat. Technol. 163-164, 67 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physical ChemistryShahrood Branch, Islamic Azad UniversityShahroodIran
  2. 2.Department of Natural and Mathematic SciencesTurin Polytechnic University in TashkentTashkentUzbekistan

Personalised recommendations