A decentralised topology control to regulate global properties of complex networks

  • Sabato Manfredi
  • Edmondo Di Tucci
Open Access
Regular Article


In the last decade much research effort has been devoted to the investigation of the interplay between properties (i.e. synchronization, clustering, resilience to node fault) and topology of complex networks. Many algorithms have been proposed to construct a network topology with a given properties or to optimize them. These algorithms are static, off-line implemented and may require global network knowledge. In this paper we propose a simple decentralized topology control algorithm that by local actions carried out at the node allows to regulate network global properties. Additionally the algorithm is dynamic coping with both node and link faults and can be on-line implemented.


Statistical and Nonlinear Physics 


  1. 1.
    L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R.V. Boas, Adv. Phys. 56, 167 (2007)CrossRefADSGoogle Scholar
  2. 2.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    R. Hulsermann, A. Betker, M. Jager, S. Bodamer, M. Barry, J. Spath, C. Gauger, M. Kohn, ITG FACHBERICHT 182, 65 (2004)Google Scholar
  4. 4.
    F. Constantinou, P. Mavrommatis, Identifying known and unknown peer-to-peer traffic, in Network Computing and Applications, 2006. NCA 2006. Fifth IEEE International Symposium on (IEEE, 2006), pp. 93–102Google Scholar
  5. 5.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)CrossRefADSGoogle Scholar
  6. 6.
    A.L. Barabasi, Z.N. Oltvai, Nat. Rev. Genetics 5, 101 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Fronczak, P. Fronczak, J.A. Hołyst, Phys. Rev. E 70, 056110 (2004)CrossRefADSGoogle Scholar
  8. 8.
    A. Krause, S. Giansante, J. Economic Behavior & Organization 83, 583 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Ganesh, L. Massoulié, D. Towsley, The effect of network topology on the spread of epidemics, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE (IEEE, 2005), Vol. 2, pp. 1455–1466Google Scholar
  10. 10.
    S. Manfredi, D. Angeli, IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2016.2598650Google Scholar
  11. 11.
    L. Donetti, P.I. Hurtado, M.A. Muñoz, Phys. Rev. Lett. 95, 188701 (2005)CrossRefADSGoogle Scholar
  12. 12.
    S. Markose, S. Giansante, A.R. Shaghaghi, Journal of Economic Behavior & Organization 83, 627 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Fagiolo, M. Mastrorillo, Phys. Rev. E 88, 012812 (2013)CrossRefADSGoogle Scholar
  14. 14.
    D.S. Bassett, E.T. Owens, K.E. Daniels, M.A. Porter, Phys. Rev. E 86, 041306 (2012)CrossRefADSGoogle Scholar
  15. 15.
    D. Shi, G. Chen, W. Thong, X. Yan, Circuits and Systems Magazine, IEEE 13, 66 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Albert, A. Barabási, Rev. Mod. Phys. 74, 47 (2002)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    P. Erdős, A. Rényi, Publ. Math. Instrum. Hungar. Acad. Sci. 5, 17 (1960)Google Scholar
  18. 18.
    M. Dadashi, I. Barjasteh, M. Jalili, Chaos 20, 043119 (2010)CrossRefADSGoogle Scholar
  19. 19.
    D. Xu, Y. Li, T.J. Wu, Physica A 382, 722 (2007)CrossRefADSGoogle Scholar
  20. 20.
    M. Jalili, Neural Networks and Learning Systems IEEE Trans. 24, 1009 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Manfredi, Control Engineering Practice 21, 381 (2013)CrossRefGoogle Scholar
  22. 22.
    R. Olfati-Saber, R.M. Murray, IEEE Trans. Automatic Control 49, 1520 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Manfredi, D. Angeli, Automatica 77, 51 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Manfredi, D. Angeli, Automatica 64, 182 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Knorn, R. Stanojevic, M. Corless, R. Shorten, Int. J. Control 82, 2095 (2009)CrossRefGoogle Scholar
  26. 26.
    P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa, R. Sukthankar, Automatica 46, 390 (2010)CrossRefGoogle Scholar
  27. 27.
    L. Sabattini, C. Secchi, N. Chopra, Decentralized control for maintenance of strong connectivity for directed graphs, in Control Automation (MED), 2013 21st Mediterranean Conference on (2013), pp. 978–986Google Scholar
  28. 28.
    S. Manfredi, E.D. Tucci, Int. J. Control, DOI: 10.1080/ 00207179.2016.1201218Google Scholar
  29. 29.
    T. Nishikawa, A.E. Motter, Y. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91, 014101 (2003)CrossRefADSGoogle Scholar
  30. 30.
    J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 78, 065102 (2008)CrossRefADSGoogle Scholar
  31. 31.
    S. Manfredi, Ad Hoc Networks 13, 234 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Manfredi, IEEE Wireless Commun. 21, 81 (2014)CrossRefGoogle Scholar
  33. 33.
    S. Manfredi, Ad Hoc Networks 11, 1942 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
  2. 2.Control and Power Group, Electrical and Electronic Engineering Department, Imperial CollegeLondonUK

Personalised recommendations