de Haas-van Alphen oscillations with non-parabolic dispersions

Regular Article
  • 51 Downloads

Abstract

de Haas-van Alphen oscillation spectrum of two-dimensional systems is studied for general power law energy dispersion, yielding a Fermi surface area of the form S(E) ∝ E α for a given energy E. The case α = 1 stands for the parabolic energy dispersion. It is demonstrated that the periodicity of the magnetic oscillations in inverse field can depend notably on the temperature. We evaluated analytically the Fourier spectrum of these oscillations to evidence the frequency shift and smearing of the main peak structure as the temperature increases.

Keywords

Solid State and Materials 

References

  1. 1.
    A.A. Abrikosov, Fundamentals of the theory of metals (North-Holland, Amsterdam, 1988)Google Scholar
  2. 2.
    J. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972)Google Scholar
  3. 3.
    A. Kosevich, I. Lifschitz, Zh. Eks. Teor. Fiz. 29, 743 (1955)Google Scholar
  4. 4.
    A. Kosevich, I. Lifschitz, Sov. Phys. J. Exp. Theor. Phys. 2, 636 (1956)Google Scholar
  5. 5.
    L.M. Roth, Phys. Rev. 145, 434 (1966)CrossRefADSGoogle Scholar
  6. 6.
    A. Audouard, J.Y. Fortin, D. Vignolles, R.B. Lyubovskii, L. Drigo, F. Duc, G.V. Shilov, G. Ballon, E.I. Zhilyaeva, R.N. Lyubovskaya et al., Europhys. Lett. 97, 57003 (2012)CrossRefADSGoogle Scholar
  7. 7.
    A. Audouard, J.Y. Fortin, D. Vignolles, R. Lyubovskii, L. Drigo, G. Shilov, F. Duc, E. Zhilyaeva, R. Lyubovskaya, E. Canadell, J. Phys.: Condens. Matter 27, 315601 (2015)ADSGoogle Scholar
  8. 8.
    J.Y. Fortin, A. Audouard, Eur. Phys. J. B 88, 225 (2015)CrossRefADSGoogle Scholar
  9. 9.
    J.W. McClure, Phys. Rev. 104, 666 (1956)CrossRefADSGoogle Scholar
  10. 10.
    V.P. Mineev, K.V. Samokhin, Phys. Rev. B 72, 212504 (2005)CrossRefADSGoogle Scholar
  11. 11.
    S.E. Sebastian, N. Harrison, F.F. Balakirev, M.M. Altarawneh, P.A. Goddard, R. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Nature 511, 61 (2014)CrossRefADSGoogle Scholar
  12. 12.
    L.M. Falicov, H. Stachowiak, Phys. Rev. 147, 505 (1966)CrossRefADSGoogle Scholar
  13. 13.
    A.A. Slutskin, A.M. Kadigrobov, Soviet Physics-Solid State 9, 138 (1967)Google Scholar
  14. 14.
    A. Slutskin, Sov. Phys. J. Exp. Theor. Phys. 26, 474 (1968)ADSGoogle Scholar
  15. 15.
    B.T. Torosov, N.V. Vitanov, J. Phys. A 41, 155309 (2008)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    A. Audouard, J.Y. Fortin, D. Vignolles, R.B. Lyubovskii, E.I. Zhilyaeva, R.N. Lyubovskaya, E. Canadell, Synthetic Metals 171, 51 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Tan, T. Ziman, in Novel de Haas-van Alphen oscillation at half filling, in Proceedings of the Physical Phenomena At High Magnetic Fields-II Conference, edited by Z. Fisk, L. Gorkov, D. Meltzer, R. Schrieffer (World Scientific, Singapore, 1996), pp. 110–115Google Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, in Statistical Physics, Part 2, Course of Theoretical Physics (Butterworth-Heinemann, 1980), Vol. 9Google Scholar
  19. 19.
    D. Shoenberg, in Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984), Chap. A6, p. 500Google Scholar
  20. 20.
    R.G. Goodrich, D. Browne, R. Kurtz, D.P. Young, J.F. DiTusa, P.W. Adams, D. Hall, Phys. Rev. B 69, 125114 (2004)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut Jean Lamour, Département de Physique de la Matière et des Matériaux, Groupe de Physique Statistique, CNRS UMR 7198 – Nancy-UniversitéVandoeuvre-lès-Nancy CedexFrance
  2. 2.Laboratoire National des Champs Magnétiques Intenses (UPR 3228 CNRS, INSA, UGA, UPS)ToulouseFrance

Personalised recommendations