Spectral statistics, finite-size scaling and multifractal analysis of quasiperiodic chain with p-wave pairing

Regular Article

Abstract

We study the spectral and wavefunction properties of a one-dimensional incommensurate system with p-wave pairing and unveil that the system demonstrates a series of particular properties in its ciritical region. By studying the spectral statistics, we show that the bandwidth distribution and level spacing distribution in the critical region follow inverse power laws, which however break down in the extended and localized regions. By performing a finite-size scaling analysis, we can obtain some critical exponents of the system and find these exponents fulfilling a hyperscaling law in the whole critical region. We also carry out a multifractal analysis on system’s wavefuntions by using a box-counting method and unveil the wavefuntions displaying different behaviors in the critical, extended and localized regions.

Keywords

Solid State and Materials 

References

  1. 1.
    G. Roati et al., Nature 453, 895 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    B. Deissler et al., Nat. Phys. 6, 354 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Aubry, G. André, Ann. Isr. Phys. Soc. 3, 133 (1980)Google Scholar
  4. 4.
    P.G. Harper, Proc. Phys. Soc. London A 68, 874 (1955)ADSCrossRefGoogle Scholar
  5. 5.
    M. Wilkinson, Proc. R. Soc. London A 391, 305 (1984)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Y. Zhang, D. Bulmash, A.V. Maharaj, C.-M. Jian, S.A. Kivelson, arXiv:1504.05205 (2015)
  7. 7.
    S. Iyer, V. Oganesyan, G. Refael, D.A. Huse, Phys. Rev. B 87, 134202 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Wang, H. Hu, S. Chen, Eur. Phys. J. B 89, 77 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    O. Motrunich, K. Damle, D.A. Huse, Phys. Rev. B 63, 224204 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    P.W. Brouwer, A. Furusaki, I.A. Gruzberg, C. Mudry, Phys. Rev. Lett. 85, 1064 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    I.A. Gruzberg, N. Read, S. Vishveshwara, Phys. Rev. B 71, 245124 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    A. Lobos, R. Lutchyn, S. Das Sarma, Phys. Rev. Lett. 109, 146403 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P.W. Brouwer, M. Duckheim, A. Romita, F. von Oppen, Phys. Rev. B 84, 144526 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Tezuka, A.M. Garcia-Garcia, Phys. Rev. A 82, 043613 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Tezuka, N. Kawakami, Phys. Rev. B 85, 140508 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    X. Cai, L.-J. Lang, S. Chen, Y. Wang, Phys. Rev. Lett. 110, 176403 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    W. DeGottardi, D. Sen, S. Vishveshwara, Phys. Rev. Lett. 110, 146404 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J. Wang, X.-J. Liu, G. Xianlong, H. Hu, Phys. Rev. B 93, 104504 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    P.G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966)Google Scholar
  20. 20.
    E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    L.-J. Lang, S. Chen, Phys. Rev. B. 86, 205135 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kohmoto, D. Tobe, Phys. Rev. B 77, 134204 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M. Kohmoto, Phys. Rev. Lett 26, 1198 (1983)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Tang, M. Kohmoto, Phys. Rev. B 34, 2041 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    T. Guhr, A. Müller-Groeling, H. Weidenmüller, Phys. Rep. 229, 189 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    T. Geisel, R. Ketzmerick, G. Petschel, Phys. Rev. Lett. 66, 1651 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    K. Machida, M. Fujita, Phys. Rev. B 34, 7367 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Takada, K. Ino, M. Yamanaka, Phys. Rev. E 70, 066203 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Hashimoto, K. Niizeki, Y. Okabe, J. Phys. A 25, 5211 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Thouless, Phys. Rep. 13, 93 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    M. Tezuka, A.M. Garcia-Garcia, Phys. Rev. A 82, 043613 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S.V. Isakov, R. Moessner, Phys. Rev. B 68, 104409 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    A.P. Siebesma, L. Pietronero, Europhys. Lett. 4, 597 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    J. Martin, I. Garc-Mata, O. Giraud, B. Georgeot, Phys. Rev. E 82, 046206 (2010)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A.D. Zdetsis, C.M. Soukoulis, E.N. Economou, Phys. Rev. B 33, 4936 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    I.M. Suslov, Zh. Eksp. Teor. Fiz 83, 1079 (1982)MathSciNetGoogle Scholar
  37. 37.
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    R. Dubertrand, I. Garc-Mata, B. Georgeot, O. Giraud, G. Lemar, J. Martin, Phys. Rev. Lett. 112, 234101 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Mirlin, Phys. Rep. 326, 259 (2000)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    D.S. Fisher, Phys. Rev. B 51, 6411 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    A.P. Young, H. Rieger, Phys. Rev. B 53, 8486 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of SciencesBeijingP.R. China
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingP.R. China

Personalised recommendations