Self-organization in a distributed coordination game through heuristic rules

  • Shubham Agarwal
  • Diptesh Ghosh
  • Anindya S. Chakrabarti
Regular Article


In this paper, we consider a distributed coordination game played by a large number of agents with finite information sets, which characterizes emergence of a single dominant attribute out of a large number of competitors. Formally, N agents play a coordination game repeatedly, which has exactly N pure strategy Nash equilibria, and all of the equilibria are equally preferred by the agents. The problem is to select one equilibrium out of N possible equilibria in the least number of attempts. We propose a number of heuristic rules based on reinforcement learning to solve the coordination problem. We see that the agents self-organize into clusters with varying intensities depending on the heuristic rule applied, although all clusters but one are transitory in most cases. Finally, we characterize a trade-off in terms of the time requirement to achieve a degree of stability in strategies versus the efficiency of such a solution.


Statistical and Nonlinear Physics 


  1. 1.
    A. Namatame, S.-H. Chen, Agent-Based Modeling and Network Dynamics (Oxford University Press, 2016)Google Scholar
  2. 2.
    P. Sen, B.K. Chakrabarti, Sociophysics: An Introduction (Oxford University Press, 2014)Google Scholar
  3. 3.
    M.J. Salganik, P.S. Dodds, D.J. Watts, Science 311, 854 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Watts, P.S. Dodds, J. Cons. Res. 34, 441 (2007)CrossRefGoogle Scholar
  5. 5.
    D. Stauffer, Sociophysics Simulations II: Opinion Dynamics, arXiv:physics/0503115 (2005)
  6. 6.
    E. Pugliese, C. Castellano, M. Marsili, L. Pietronero, Eur. Phys. J. B 67, 319 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D. Challet, Y.-C. Zhang, Physica A 246, 407 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    D. Challet, J. Econ. Dyn. Control 32, 85 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Pólya, Sur quelques points de la théorie des probabilités, Annales de l’I.H.P. 1, 117 (1930)Google Scholar
  10. 10.
    N.L. Johnson, S. Kotz, Urn Models and Their Application: An Approach to Modern Discrete Probability Theory (Wiley, 1977)Google Scholar
  11. 11.
    H. Mahmoud, Pólya Urn Models, Texts in Statistical Science series (Taylor and Francis Ltd, Hoboken, NJ, 2008)Google Scholar
  12. 12.
    D. Challet, M. Marsili, Y.-C. Zhang, Minority games: interacting agents in financial markets (Oxford University Press, 2004)Google Scholar
  13. 13.
    D.B. Fogel, K. Chellapilla, P.J. Angeline, IEEE Trans. Evol. Comput. 3, 142 (1999)CrossRefGoogle Scholar
  14. 14.
    J.-Q. Zhang, Z.-X. Huang, Z. Wu, R. Su, Y.-C. Lai, Sci. Rep. 6, 20925 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Chakrabarti, B.K. Chakrabarti, A. Chatterjee, M. Mitra, Physica A 388, 2420 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Ghosh, A. Chatterjee, M. Mitra, B.K. Chakrabarti, New J. Phys. 12, 075033 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    W.B. Arthur, Am. Econ. Rev. 84, 406 (1994)Google Scholar
  18. 18.
    A. Chakraborti, D. Challet, A. Chatterjee, M. Marsili, Y.-C. Zhang, B.K. Chakrabarti, Phys. Rep. 552, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Challet, Competition between adaptive agents: learning and collective efficiency, in Collective and the design of complex systems, edited by K. Turner, D. Wolpart (Springer, 2004)Google Scholar
  20. 20.
    S. Hod, E. Nakar, Phys. Rev. Lett. 88, 238702 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Osborn, An introduction to game theory (Oxford University Press, 2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shubham Agarwal
    • 1
  • Diptesh Ghosh
    • 2
  • Anindya S. Chakrabarti
    • 3
  1. 1.Indian Institute of TechnologyChennaiIndia
  2. 2.Production & Quantitative Methods Area, Indian Institute of ManagementAhmedabadIndia
  3. 3.Economics Area, Indian Institute of ManagementAhmedabadIndia

Personalised recommendations