Advertisement

Kramers escape of a self-propelled particle

  • Alexander Geiseler
  • Peter Hänggi
  • Gerhard Schmid
Regular Article

Abstract

We investigate the escape rate of an overdamped, self-propelled spherical Brownian particle on a surface from a metastable potential well. Within a modeling in terms of a 1D constant speed of the particle’s active dynamics we consider the associated rate using both numerical and analytical approaches. Regarding the properties of the stationary state in the potential well, two major timescales exist, each governing the translational and the rotational dynamics of the particle, respectively. The particle radius is identified to present the essential quantity in charge of regulating the ratio between those timescales. For very small and very large particle radii, approximate analytic expressions for the particle’s escape rate can be derived, which, within their respective range of validity, compare favorably with the precise escape numerics of the underlying full two-dimensional Fokker-Planck description.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Walther, A.H.E. Müller, Chem. Rev. 113, 5194 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Würger, Phys. Rev. Lett. 98, 138301 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, J. Phys.: Condens. Matter 24, 284129 (2012)Google Scholar
  7. 7.
    M. Yang, M. Ripoll, Soft Matter 9, 4661 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Moran, P.M. Wheat, J.D. Posner, Phys. Rev. E 81, 065302 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, Europhys. Lett. 106, 58003 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    F. Drube, Ph.D. thesis, Ludwig-Maximilians-Universität, München, 2013Google Scholar
  14. 14.
    J. Lighthill, SIAM Rev. 18, 161 (1976)MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chemie Int. Ed. 45, 5420 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Sundararajan, P.E. Lammert, A.W. Zudans, V.H. Crespi, A. Sen, Nano Lett. 8, 1271 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, ACS Nano 6, 3383 (2012)CrossRefGoogle Scholar
  19. 19.
    H.C. Berg, E. coli in Motion (Springer-Verlag, New York, 2004)Google Scholar
  20. 20.
    R. Gejji, P.M. Lushnikov, M. Alber, Phys. Rev. E 85, 021903 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Elgeti, G. Gompper, Europhys. Lett. 109, 58003 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Kramers, Physica 7, 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Hänggi, J. Stat. Phys. 42, 105 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    P. Hänggi, J. Stat. Phys. 44, 1003 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    L. Pohlmann, H. Tributsch, Electrochim. Acta 42, 2737 (1997)CrossRefGoogle Scholar
  27. 27.
    P.S. Burada, B. Lindner, Phys. Rev. E 85, 032102 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    P.K. Ghosh, J. Chem. Phys. 141, 061102 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    K. Schaar, A. Zöttl, H. Stark, Phys. Rev. Lett. 115, 038101 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    C. Schmitt, B. Dybiec, P. Hänggi, C. Bechinger, Europhys. Lett. 74, 937 (2006)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    I.N. Serdyuk, N.R. Zaccai, J. Zaccai, Methods in Molecular Biophysics: Structure, Dynamics, Function (Cambridge University Press, New York, 2007)Google Scholar
  32. 32.
    X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys. Rev. E 88, 032304 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    A. Pototsky, H. Stark, Europhys. Lett. 98, 50004 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)ADSGoogle Scholar
  35. 35.
    X. Ao, P.K. Ghosh, Y. Li, G. Schmid, P. Hänggi, F. Marchesoni, Europhys. Lett. 109, 10003 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    P. Kalinay, Eur. Phys. J. Special Topics 223, 3027 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    G. Szamel, Phys. Rev. E 90, 012111 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    New Trends in Kramers’ Reaction Rate Theory, edited by P. Hänggi, P. Talkner (Kluwer Academic Publishers, Boston, London, 1995)Google Scholar
  39. 39.
    P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, Berlin, Heidelberg, 1992)Google Scholar
  40. 40.
    M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998)CrossRefGoogle Scholar
  41. 41.
    W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations (Academic Press, San Diego, 1991)Google Scholar
  42. 42.
    E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, Heidelberg, 1996)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexander Geiseler
    • 1
  • Peter Hänggi
    • 1
  • Gerhard Schmid
    • 1
  1. 1.Institute of Physics, University of AugsburgAugsburgGermany

Personalised recommendations