Proper aspiration level promotes generous behavior in the spatial prisoner’s dilemma game

  • Zhi-Hai Rong
  • Qian Zhao
  • Zhi-Xi Wu
  • Tao Zhou
  • Chi Kong Tse
Regular Article

Abstract

Zero-determinant strategies, which can unilaterally define a linear relationship between two individuals’ long-term payoff, have drawn much attention to comprehend the emergence of cooperation among individuals with repeated interactions. A subset of zero-determinant strategies, extortion strategy, can let an extortioner’s surplus exceed her opponent’s by a fixed percentage. On the other hand, the dual generosity strategy can ensure that a complier’s payoff is never larger than her opponent’s. In the framework of the prisoner’s dilemma game driven by payoff aspiration, we investigate in this paper the evolution of generosity strategy, in competition with extortion and unconditional defection strategies. We show that extortioners act as a catalyst to induce more defectors to change to compliers. Such influence will enhance when extortioners become more greedy. At a low aspiration level where individuals are easy to be satisfied with their current payoffs, different strategies can coexist. With the increase of aspiration level, unsatisfied individuals are likely to turn to compliers and build long-term reciprocity with their neighbors. However, at a high aspiration level, individuals are difficult to be satisfied with their payoffs and may randomly change their behaviors. Thus proper aspiration level promotes the emergence of generous behavior in the spatial prisoner’s dilemma game.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)Google Scholar
  2. 2.
    M.A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life (Harvard University Press, Cambridge, 2006)Google Scholar
  3. 3.
    K. Sigmund, The Calculus of Selfishness (Princeton University Press, New Jersey, 2010)Google Scholar
  4. 4.
    M.A. Nowak, Science 314, 1560 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Rand, M.A. Nowak, Trends in Cognitive Sciences 17, 413 (2013)CrossRefGoogle Scholar
  6. 6.
    W.H. Press, F.J. Dyson, Proc. Natl. Acad. Sci. USA 109, 10409 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    C. Adami, A. Hintze, Nat. Commun. 4, 1038 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Hilbe, M.A. Nowak, K. Sigmund, Proc. Natl. Acad. Sci. USA 110, 6913 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.J. Stewart, J.B. Plotkin, Proc. Natl. Acad. Sci. USA 109, 10134 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    D. Hao, Z. Rong, T. Zhou, Chin. Phys. B 23, 078905 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    G. Szabó, G. Fath, Phys. Rep. 446, 97 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C.P. Roca, J.A. Cuesta, A. Sánchez, Phys. Life Rev. 6, 208 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Perc, A. Szolnoki, BioSystems 99, 109 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L.M. Floría, Y. Moreno, J. R. Soc. Interface 10, 20120997 (2013)CrossRefGoogle Scholar
  15. 15.
    M.A. Nowak, R. May, Nature 359, 826 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Phys. Rev. E 72, 056128 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    C. Hauert, G. Szabó, American J. Phys. 73, 405 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J. Gómez-Gardeñes, M. Campillo, L.M. Floría, Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Rong, X. Li, X.F. Wang, Phys. Rev. E 76, 027101 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    J. Poncela, J. Gómez-Gardeñes, L.M. Floriá, Y. Moreno, A. Sánchez, Europhys. Lett. 88, 38003 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H.X. Yang, Z.X. Wu, W.B. Du, Europhys. Lett. 99, 10006 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    G. Szabó, C. Toke, Phys. Rev. E 58, 69 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    G. Szabó, J. Vukov, A. Szolnoki, Phys. Rev. E 72, 047107 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    J. Vukov, G. Szabó, A. Szolnoki, Phys. Rev. E 73, 067103 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A. Szolnoki, G. Szabó, Europhys. Lett. 77, 30004 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Szolnoki, M. Perc, New J. Phys. 10, 043036 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A. Szolnoki, Z. Wang, M. Perc, Sci. Rep. 2, 576 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Z.X. Wu, Z. Rong, M.Z.Q. Chen, Europhys. Lett. 110, 30002 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Z.X. Wu, X.J. Xu, Y.H. Wang, Phys. Rev. E 74, 021107 (2006)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J.Y. Guan, Z.X. Wu, Z.G. Huang, X.J. Xu, Y.H. Wang, Europhys. Lett. 76, 1214 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    H.X. Yang, W.X. Wang, Z.X. Wu, Y.C. Lai, B.H. Wang, Phys. Rev. E 79, 056107 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    X.J. Chen, L. Wang, Phys. Rev. E 77, 017103 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    X.J. Chen, F. Fu, L. Wang, Physica A 387, 5609 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    M. Perc, Z. Wang, PLoS One 5, e15117 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Liu, X. Chen, L. Zhang, L. Wang, M. Perc, PLoS One 7, e30689 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    H. Ohtsuki, M.A. Nowak, J.M. Pacheco, Phys. Rev. Lett. 98, 108106 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Z.X. Wu, Y.H. Wang, Phys. Rev. E 74, 041114 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Z.X. Wu, Z. Rong, P. Holme, Phys. Rev. E 80, 036103 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Rong, Z.X. Wu, W.X. Wang, Phys. Rev. E 82, 026101 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Z.H. Li, Physica A 390, 4244 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Rong, Z.X. Wu, G. Chen, Europhys. Lett. 102, 68005 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Floría, Sci. Rep. 2, 620 (2012)CrossRefGoogle Scholar
  45. 45.
    Z. Wang, M. Perc, Europhys. Lett. 97, 48001 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013)ADSGoogle Scholar
  47. 47.
    Z. Wang, L. Wang, M. Perc, Phys. Rev. E 89, 052813 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    A. Szolnoki, M. Perc, Phys. Rev. E 89, 022804 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    A. Szolnoki, M. Perc, Sci. Rep. 4, 5496 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Z.X. Wu, Z. Rong, Phys. Rev. E 90, 062102 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Z. Rong, Z.X. Wu, D. Hao, M.Z.Q. Chen, T. Zhou, New J. Phys. 17, 033032 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    E. Akin, arXiv:1211.0969 (2012)
  53. 53.
    A.J. Stewart, J.B. Plotkin, Proc. Natl. Acad. Sci. USA 110, 15348 (2013)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    C. Hilbe, M.A. Nowak, A. Traulsen, PLoS One 8, e77886 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    A.J. Stewart, J.B. Plotkin, Proc. Natl. Acad. Sci. USA 111, 17558 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    J. Liu, Y. Li, C. Xu, P.M. Hui, Physica A 430, 81 (2015)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    L. Pan, D. Hao, Z. Rong, T. Zhou, Sci. Rep. 5, 13096 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    C. Hilbe, B. Wu, A. Traulsen, M.A. Nowak, Proc. Natl. Acad. Sci. USA 111, 16425 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    A.J. Stewart, J.B. Plotkin, Sci. Rep. 6, 26889 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhi-Hai Rong
    • 1
    • 2
  • Qian Zhao
    • 1
  • Zhi-Xi Wu
    • 3
  • Tao Zhou
    • 1
    • 4
  • Chi Kong Tse
    • 2
  1. 1.CompleX Lab, Web Sciences Center, University of Electronic Science and Technology of ChinaChengduP.R. China
  2. 2.Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHong KongP.R. China
  3. 3.Institute of Computational Physics and Complex Systems, Lanzhou UniversityGansuP.R. China
  4. 4.Big Data Research Center, University of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations