Skip to main content
Log in

Mechanically driven domain wall movement in magnetoelastic nanomagnets

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Magnetic domain walls are fundamental objects arising in ferromagnetic materials, largely investigated both through micromagnetic simulations and experiments. While current- and field-based techniques for inducing domain wall propagation have been widely studied for fundamental understanding and application-oriented purposes, the possibility to manipulate domain walls using mechanical stress in magnetoelastic materials has only recently drawn interest. Here, a complete analytical model describing stress-induced transverse domain wall movement in ferromagnetic nanostripe with variable cross-section is presented. This approach yields a nonlinear integro-differential equation describing the magnetization field. Its numerical implementation, based on the nonlinear relaxation method, demonstrates the possibility to precisely control the position of a domain wall through mechanical action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Allwood, G. Xiong, C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science, 309, 1688 (2005)

    Article  ADS  Google Scholar 

  2. S.S. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  3. T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, T. Shinjo, Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  4. D. Atkinson, D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, R.P. Cowburn, Nat. Mater. 2, 85 (2003)

    Article  ADS  Google Scholar 

  5. G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nat. Mater. 4, 741 (2005)

    Article  ADS  Google Scholar 

  6. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y.B. Bazaliy, S.S.P. Parkin, Phys. Rev. Lett. 98, 037204 (2007)

    Article  ADS  Google Scholar 

  7. D. Ravelosona, S. Mangin, J.A. Katine, E.E. Fullerton, B.D. Terris, Appl. Phys. Lett. 90, 072508 (2007)

    Article  ADS  Google Scholar 

  8. A.V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K.A. Zvezdin, A. Anane, J. Grollier, A. Fert, Phys. Rev. B 87, 020402 (2013)

    Article  ADS  Google Scholar 

  9. P.N. Skirdkov, K.A. Zvezdin, A.D. Belanovsky, J. Grollier, V. Cros, C.A. Ross, A.K. Zvezdin, Appl. Phys. Lett. 104, 242401 (2014)

    Article  ADS  Google Scholar 

  10. J. Dean, M.T. Bryan, T. Schrefl, D.A. Allwood, J. Appl. Phys. 109, 023915 (2011)

    Article  ADS  Google Scholar 

  11. M.T. Bryan, J. Dean, D.A. Allwood, Phys. Rev. B 85, 144411 (2012)

    Article  ADS  Google Scholar 

  12. N. Lei, T. Devolder, G. Agnus, P. Aubert, L. Daniel, J.-V. Kim, W. Zhao, T. Trypiniotis, R.P. Cowburn, C. Chappert, D. Ravelosona, P. Lecoeur, Nat. Commun. 4, 1378 (2013)

    Article  ADS  Google Scholar 

  13. B. Van de Wiele, L. Laurson, K.J.A. Franke, S. van Dijken, Appl. Phys. Lett. 104, 012401 (2014)

    Article  ADS  Google Scholar 

  14. K.J.A. Franke, B. Van de Wiele, Y. Shirahata, S.J. Hämäläinen, T. Taniyama, S. van Dijken, Phys. Rev. X 5, 011010 (2015)

    Google Scholar 

  15. R. Tolley, T. Liu, Y. Xu, S. Le Gall, M. Gottwald, T. Hauet, M. Hehn, F. Montaigne, E.E. Fullerton, S. Mangin, Appl. Phys. Lett. 106, 242403 (2015)

    Article  ADS  Google Scholar 

  16. E. De Ranieri, P.E. Roy, D. Fang, E.K. Vehsthedt, A.C. Irvine, D. Heiss, A. Casiraghi, R.P. Campion, B.L. Gallagher, T. Jungwirth, J. Wunderlich, Nat. Mater. 12, 808 (2013)

    Article  ADS  Google Scholar 

  17. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84, 119 (2012)

    Article  ADS  Google Scholar 

  18. M. Sharad, C. Augustine, G. Panagopoulos, K. Roy, IEEE Trans. Nanotechnol. 11, 843 (2012)

    Article  ADS  Google Scholar 

  19. B. Behin-Aein, D. Datta, S. Salahuddin, S. Datta, Nat. Nanotechnol. 5, 266 (2010)

    Article  ADS  Google Scholar 

  20. S. Parkin, S.-H. Yang, Nat. Nanotechnol. 10, 195 (2015)

    Article  ADS  Google Scholar 

  21. N. Locatelli, V. Cros, J. Grollier, Nat. Mater. 13, 11 (2014)

    Article  ADS  Google Scholar 

  22. H. Sohn, M.E. Nowakowski, C.Y. Liang, J.L. Hockel, K. Wetzlar, S. Keller, B.M. McLellan, M.A. Marcus, A. Doran, A. Young, M. Kläui, G.P. Carman, J. Bokor, R.N. Candler, ACS Nano 9, 4814 (2015)

    Article  Google Scholar 

  23. M. Kruzík, A. Prohl, SIAM Rev. 48, 439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Mathurin, S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, Appl. Phys. Lett. 108, 082401 (2016)

    Article  ADS  Google Scholar 

  25. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  26. S. Giordano, M. Goueygou, N. Tiercelin, A. Talbi, P. Pernod, V. Preobrazhensky, Int. J. Eng. Sci. 78, 134 (2014)

    Article  MathSciNet  Google Scholar 

  27. S.-T. Gu, Q.-C. He, Philos. Mag. 95, 2793, (2015)

    Article  ADS  Google Scholar 

  28. S. Giordano, Mech. Res. Comm. 55, 18 (2014)

    Article  Google Scholar 

  29. N. Tiercelin, Y. Dusch, V. Preobrazhensky, P. Pernod, J. Appl. Phys. 109, 07D726 (2011)

    Article  Google Scholar 

  30. N. Tiercelin, Y. Dusch, A. Klimov, S. Giordano, V. Preobrazhensky, P. Pernod, Appl. Phys. Lett. 99, 192507 (2011)

    Article  ADS  Google Scholar 

  31. Y. Dusch, N. Tiercelin, A. Klimov, S. Giordano, V. Preobrazhensky, P. Pernod, J. Appl. Phys. 113, 17C719 (2013)

    Article  Google Scholar 

  32. Y. Dusch, V. Rudenko, N. Tiercelin, S. Giordano, V. Preobrazhensky, P. Pernod, Nanomater. Nanostruct. 2, 44 (2012)

    Google Scholar 

  33. A.K. Biswas, S. Bandyopadhyay, J. Atulasimha, Appl. Phys. Lett. 104, 232403 (2014)

    Article  ADS  Google Scholar 

  34. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, Phys. Rev. B 85, 155321 (2012)

    Article  ADS  Google Scholar 

  35. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, J. Phys. D 46, 325002 (2013)

    Article  Google Scholar 

  36. N. Tiercelin, Y. Dusch, S. Giordano, A. Klimov, V. Preobrazhensky, P. Pernod, Strain Mediated Magnetoelectric Memory, in Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing, edited by S. Bandyopadhyay, J. Atulasimha (John Wiley & Sons Ltd., 2016)

  37. K. Roy, S. Bandyopadhyay, J. Atulasimha, J. Appl. Phys. 112, 023914 (2012)

    Article  ADS  Google Scholar 

  38. H. Ahmad, J. Atulasimha, S. Bandyopadhyay, Sci. Rep. 5, 18264 (2015)

    Article  ADS  Google Scholar 

  39. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, London, 1984)

  40. W.F. Brown, Micromagnetics (Interscience Publisher, New York, 1963)

  41. W.F. Brown, Magnetoelastic Interactions (Springer-Verlag, Berlin, 1966)

  42. J.A. Stratton, Electromagnetic theory (Mc Graw Hill, New York, 1941)

  43. C. Miehe, G. Ethiraj, Comput. Methods Appl. Mech. Eng. 245, 331 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Bertotti, I. Mayergoyz, C. Serpico, Nonlinear Magnetization Dynamic in Nanosystems (Elsevier, Oxford, 2000)

  45. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  Google Scholar 

  46. Y. Dusch, N. Tiercelin, A. Klimov, V. Rudenko, Y. Ignatov, S. Hage-Ali, P. Pernod, V. Preobrazhensky, J. Appl. Phys. 109, 07A720 (2011)

    Article  Google Scholar 

  47. P. Gaunt, Philos. Mag. 48, 261 (1983)

    Article  ADS  Google Scholar 

  48. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, J. Appl. Phys. 108, 074107 (2010)

    Article  ADS  Google Scholar 

  49. D.I. Paul, J. Appl. Phys. 53, 1649 (1982)

    Article  ADS  Google Scholar 

  50. J.P. Attané, Y. Samson, A. Marty, D. Halley, C. Beigné, Appl. Phys. Lett. 79, 794 (2001)

    Article  ADS  Google Scholar 

  51. M. Kläui, C.A.F. Vaz, J. Rothman, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, Phys. Rev. Lett. 90, 097202 (2003)

    Article  ADS  Google Scholar 

  52. D. Petit, A.-V. Jausovec, D. Read, R.P. Cowburn, J. Appl. Phys. 103, 114307 (2008)

    Article  ADS  Google Scholar 

  53. M. Kläui, H. Ehrke, U. Rüdiger, T. Kasama, R.E. Dunin-Borkowski, D. Backes, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, G. Faini, E. Cambril, W. Wernsdorfer, Appl. Phys. Lett. 87, 102509 (2005)

    Article  ADS  Google Scholar 

  54. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999)

  55. D.B. Gopman, J.W. Lau, K.P. Mohanchandra, K. Wetzlar, G.P. Carman, Phys. Rev. B 93, 064425 (2016)

    Article  ADS  Google Scholar 

  56. Y.Y. Huang, Y.M. Jin, Appl. Phys. Lett. 93, 142504 (2008)

    Article  ADS  Google Scholar 

  57. H.B. Keller, Numerical Solution of Two Point Boundary Value Problems (SIAM, Philadelphia, 1976)

  58. P. Xu, K. Xia, C. Gu, L. Tang, H. Yang, J. Li, Nat. Nanotechnol. 3, 97 (2008)

    Article  ADS  Google Scholar 

  59. L. Landau, E. Lifshitz, Phys. Zeitsch. der Sow. 8, 153 (1935)

    Google Scholar 

  60. T.L. Gilbert, Phys. Rev. 100, 1243 (1955) (abstract only)

    Google Scholar 

  61. T.L. Gilbert, IEEE Trans. Mag. 40, 3443 (2004)

    Article  ADS  Google Scholar 

  62. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, Eur. Phys. J. B 86, 249 (2013)

    Article  ADS  Google Scholar 

  63. R. Ravaud, G. Lemarquand, Prog. Electromagn. Res. B 98, 207 (2009)

    Article  Google Scholar 

  64. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, San Diego, 1965)

  65. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1970)

  66. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (National Institute of Standards and Technology and Cambridge University Press, New York, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giordano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathurin, T., Giordano, S., Dusch, Y. et al. Mechanically driven domain wall movement in magnetoelastic nanomagnets. Eur. Phys. J. B 89, 169 (2016). https://doi.org/10.1140/epjb/e2016-70226-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70226-0

Keywords

Navigation