Landau levels in graphene in the presence of emergent gravity

Regular Article


We consider graphene in the presence of external magnetic field and elastic deformations that cause emergent magnetic field. The total magnetic field results in the appearance of Landau levels in the spectrum of quasiparticles. In addition, the quasiparticles in graphene experience the emergent gravity. We consider the particular choice of elastic deformation, which gives constant emergent magnetic field and vanishing torsion. Emergent gravity may be considered as perturbation. We demonstrate that the corresponding first order approximation affects the energies of the Landau levels only through the constant renormalization of Fermi velocity. The degeneracy of each Landau level receives correction, which depends essentially on the geometry of the sample. There is the limiting case of the considered elastic deformation, that corresponds to the uniformly stretched graphene. In this case in the presence of the external magnetic field the degeneracies of the Landau levels remain unchanged.


Solid State and Materials 


  1. 1.
    M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, Cambridge, 2012)Google Scholar
  2. 2.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, in A Course of Theoretical Physics (Pergamon Press, 1970), Vol. 7Google Scholar
  3. 3.
    B.A. Bilby, E. Smith, Proc. Roy. Soc. Sect. A 231, 263 (1955)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    B.A. Bilby, E. Smith, Proc. Roy. Soc. Sect. A 236, 481 (1956)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Kröner, Arch. Rational Mech. Anal. 4, 18 (1960)Google Scholar
  6. 6.
    I.E. Dzyaloshinskii, G.E. Volovick, Ann. Phys. 125, 67 (1980)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Kleinert, J. Zaanen, Phys. Lett. A 324, 361 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. de Juan, A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 828, 625 (2010)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Mesaros, D. Sadri, J. Zaanen, Phys. Rev. B 82, 073405 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    C.D. Froggatt, H.B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991)Google Scholar
  12. 12.
    G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)Google Scholar
  13. 13.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    G.E. Volovik, M.A. Zubkov, Ann. Phys. 340, 352 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.E. Volovik, M.A. Zubkov, Emergent gravity in graphene, International Moscow Phenomenology Workshop, July 21, 2013–July 25, 2013, arXiv:1308.2249
  16. 16.
    M. Oliva-Leyva, G.G. Naumis, Phys. Rev. B 88, 085430 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Oliva-Leyva, G.G. Naumis, Phys. Lett. A 379, 2645 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, arXiv:1003.5179v2 (2010)
  19. 19.
    Hidekatsu Suzuura, Tsuneya Ando, Phys. Rev. B 65, 235412 (2002)Google Scholar
  20. 20.
    F. Guinea, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, Phys. Rev. B 81, 035408 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F. Guinea, A.K. Geim, M.I. Katsnelson Nat. Phys. 6, 30 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Schwarz, Properties of Graphene in an External Magnetic Field, Ph.D. thesis, University of Bern, 2011Google Scholar
  23. 23.
    M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    F. Guinea, A.K. Geim, M.I. Katsnelson, Phys. Rev. B 77, 075422 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    F. Guinea, Baruch Horovitz, P. Le Doussal, Phys. Rev. B 77, 205421 (2008)Google Scholar
  26. 26.
    B. Roy, Z.-X. Hu, K. Yang, Phys. Rev. B. 87, 121408 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    G.E. Volovik, M.A. Zubkov, Ann. Phys. 356, 255 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    The Atiyah-Patodi-Singer Index Theorem (Research Notes in Mathematics), edited by R. Melrose, A.K. Peters (CRC Press, 1993)Google Scholar
  29. 29.
    M.M. Ansourian, Phys. Lett. B 70, 301 (1977)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Kimura, J. High Energy Phys. 0708, 048 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Moscow Institute of Physics and Technology, 9, Institutskii per.Moscow RegionRussia
  3. 3.Far Eastern Federal University, School of BiomedicineVladivostokRussia
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations