Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model

Regular Article

Abstract

The localization properties of eigenfunctions for two interacting particles in the one-dimensional Anderson model are studied for system sizes up to N = 5000 sites corresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. The eigenfunction structure is illustrated in position, momentum and energy representation, the latter corresponding to an expansion in non-interacting product eigenfunctions. Different types of localization lengths are computed for parameter ranges in system size, disorder and interaction strengths inaccessible until now. We confirm that one-parameter scaling theory can be successfully applied provided that the condition of N being significantly larger than the one-particle localization length L 1 is verified. The enhancement effect of the two-particle localization length L 2 behaving as L 2 ~ L 2 1 is clearly confirmed for a certain quite large interval of optimal interactions strengths. Further new results for the interaction dependence in a very large interval, an energy value outside the band center, and different interaction ranges are obtained.

Keywords

Solid State and Materials 

References

  1. 1.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    A. MacKinnon, B. Kramer, Phys. Rev. Lett. 47, 1546 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    A. MacKinnon, B. Kramer, Z. Phys. B 53, 1 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    K.B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1997)Google Scholar
  6. 6.
    T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    P.W. Brouwer, K. Frahm, Phys. Rev. B 53, 1490 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    O.N. Dorokhov, Zh. Eksp. Teor. Fiz. 98, 646 (1990) [Sov. Phys. J. Exp. Theor. Phys. 71, 360 (1990)]Google Scholar
  10. 10.
    D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    M. Screiber, S.S. Hodgman, P. Bordia, H. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Y. Imry, Europhys. Lett. 30, 405 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    D.C. Thouless, Phys. Rev. Lett. 39, 1167 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    K. Frahm, A. Müller-Groeling, J.-L. Pichard, D. Weinmann, Europhys. Lett. 31, 169 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    D. Weinmann, A. Müller-Groeling, J.-L. Pichard, K. Frahm, Phys. Rev. Lett. 75, 1598 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    P. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 75, 3501 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. B 52, R11580 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    K. Frahm, A. Müller-Groeling, Europhys. Lett. 32, 385 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    F. Borgonovi, D.L. Shepelyansky, Nonlinearity 8, 877 (1995)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Borgonovi, D.L. Shepelyansky, J. Phys. I 6, 287 (1996)Google Scholar
  21. 21.
    O. Halfpap, A. MacKinnon, B. Kramer, Solid State Commun. 107, 379 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    F. von Oppen, T. Wetting, J. Müller, Phys. Rev. Lett. 76, 491 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Ph. Jacquod, D.L. Shepelyansky, O.P. Sushkov, Phys. Rev. Lett. 78, 923 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    D.L. Shepelyansky, in Proceedings of les Rencontres de Moriond 1996 on “Correlated Fermions and Transport in Mesoscopic Systems”, edited by T. Martin, G. Montambaux, J. Trân Thanh Vân (Editions Frontières, Gif-sur-Yvette, 1996), p. 201Google Scholar
  25. 25.
    I.V. Ponomarev, P.G. Silvestrov, Phys. Rev. B 56, 3742 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Roemer, M. Schreiber, T. Vojta, Phys. Stat. Sol. B 211, 681 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    K. Frahm, A. Müller–Groeling, J.-L. Pichard, Phys. Rev. Lett. 76, 1509 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    K. Frahm, A. Müller–Groeling, J.-L. Pichard, Z. Phys. B 102, 261 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    J. Richert, H.A. Weidenmüller, J. Phys. A 36, 3281 (2003)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Richert, H.A. Weidenmüller, Ann. Phys. 306, 96 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D. Weinmann, J.-L. Pichard, Phys. Rev. Lett. 77, 1556 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    E. Akkermans, J.-L. Pichard, Eur. Phys. J. B 1, 223 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    X. Waintal, J.-L. Pichard, Eur. Phys. J. B 6, 117 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    X. Waintal, D. Weinmann, J.-L. Pichard, Eur. Phys. J. B 7, 451 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    S. De Toro Arias, X. Waintal, J.-L. Pichard, Eur. Phys. J. B 10, 149 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    R.A. Römer, M. Schreiber, Phys. Rev. Lett. 78, 515 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    R.A. Römer, M. Schreiber, Phys. Rev. Lett. 78, 4890 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    K.M. Frahm, A. Müller-Groeling, J.-L. Pichard, D. Weinmann, Phys. Rev. Lett. 78, 4889 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    P.H. Song, F.V. Oppen, Phys. Rev. B 59, 46 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    P.H. Song, Doochul Kim, Phys. Rev. B 56, 12217 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    M. Leadbeater, R.A. Römer, M. Schreiber, Eur. Phys. J. B 8, 643 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    K.M. Frahm, Eur. Phys. J. B 10, 371 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    D.O. Krimer, R. Khomeriki, S. Flach, J. Exp. Theor. Phys. Lett. 94, 406 (2011)CrossRefGoogle Scholar
  44. 44.
    D.O. Krimer, S. Flach, Phys. Rev. B 91, 100201(R) (2015)ADSCrossRefGoogle Scholar
  45. 45.
    K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 88, 337 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    S. Flach, M. Ivanchenko, R. Khomeriki, Europhys. Lett. 98, 66002 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    G.W. Stewart, Matrix Algorithms Volume II: Eigensystems (SIAM, 2001)Google Scholar
  48. 48.
    K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 76, 57 (2010)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    H.R. Schwartz, Numerische Mathematik (B.G. Teubner, Stuttgart, 1986)Google Scholar
  50. 50.
    K.M. Frahm, http://www.quantware.ups-tlse.fr/QWLIB/tipdisorder1d, Accessed February (2016)
  51. 51.
    M. Ortuno, E. Cuevas, Europhys. Lett. 46, 224 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, Université de Toulouse, CNRSToulouseFrance

Personalised recommendations