Skip to main content
Log in

Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The localization properties of eigenfunctions for two interacting particles in the one-dimensional Anderson model are studied for system sizes up to N = 5000 sites corresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. The eigenfunction structure is illustrated in position, momentum and energy representation, the latter corresponding to an expansion in non-interacting product eigenfunctions. Different types of localization lengths are computed for parameter ranges in system size, disorder and interaction strengths inaccessible until now. We confirm that one-parameter scaling theory can be successfully applied provided that the condition of N being significantly larger than the one-particle localization length L 1 is verified. The enhancement effect of the two-particle localization length L 2 behaving as L 2 ~ L 2 1 is clearly confirmed for a certain quite large interval of optimal interactions strengths. Further new results for the interaction dependence in a very large interval, an energy value outside the band center, and different interaction ranges are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  2. A. MacKinnon, B. Kramer, Phys. Rev. Lett. 47, 1546 (1981)

    Article  ADS  Google Scholar 

  3. A. MacKinnon, B. Kramer, Z. Phys. B 53, 1 (1983)

    Article  ADS  Google Scholar 

  4. B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)

    Article  ADS  Google Scholar 

  5. K.B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1997)

  6. T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

  8. P.W. Brouwer, K. Frahm, Phys. Rev. B 53, 1490 (1996)

    Article  ADS  Google Scholar 

  9. O.N. Dorokhov, Zh. Eksp. Teor. Fiz. 98, 646 (1990) [Sov. Phys. J. Exp. Theor. Phys. 71, 360 (1990)]

    Google Scholar 

  10. D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994)

    Article  ADS  Google Scholar 

  11. M. Screiber, S.S. Hodgman, P. Bordia, H. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Imry, Europhys. Lett. 30, 405 (1995)

    Article  ADS  Google Scholar 

  13. D.C. Thouless, Phys. Rev. Lett. 39, 1167 (1977)

    Article  ADS  Google Scholar 

  14. K. Frahm, A. Müller-Groeling, J.-L. Pichard, D. Weinmann, Europhys. Lett. 31, 169 (1995)

    Article  ADS  Google Scholar 

  15. D. Weinmann, A. Müller-Groeling, J.-L. Pichard, K. Frahm, Phys. Rev. Lett. 75, 1598 (1995)

    Article  ADS  Google Scholar 

  16. P. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 75, 3501 (1995)

    Article  ADS  Google Scholar 

  17. Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. B 52, R11580 (1995)

    Article  ADS  Google Scholar 

  18. K. Frahm, A. Müller-Groeling, Europhys. Lett. 32, 385 (1995)

    Article  ADS  Google Scholar 

  19. F. Borgonovi, D.L. Shepelyansky, Nonlinearity 8, 877 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Borgonovi, D.L. Shepelyansky, J. Phys. I 6, 287 (1996)

    Google Scholar 

  21. O. Halfpap, A. MacKinnon, B. Kramer, Solid State Commun. 107, 379 (1998)

    Article  ADS  Google Scholar 

  22. F. von Oppen, T. Wetting, J. Müller, Phys. Rev. Lett. 76, 491 (1996)

    Article  ADS  Google Scholar 

  23. Ph. Jacquod, D.L. Shepelyansky, O.P. Sushkov, Phys. Rev. Lett. 78, 923 (1997)

    Article  ADS  Google Scholar 

  24. D.L. Shepelyansky, in Proceedings of les Rencontres de Moriond 1996 on “Correlated Fermions and Transport in Mesoscopic Systems”, edited by T. Martin, G. Montambaux, J. Trân Thanh Vân (Editions Frontières, Gif-sur-Yvette, 1996), p. 201

  25. I.V. Ponomarev, P.G. Silvestrov, Phys. Rev. B 56, 3742 (1997)

    Article  ADS  Google Scholar 

  26. R.A. Roemer, M. Schreiber, T. Vojta, Phys. Stat. Sol. B 211, 681 (1999)

    Article  ADS  Google Scholar 

  27. K. Frahm, A. Müller–Groeling, J.-L. Pichard, Phys. Rev. Lett. 76, 1509 (1996)

    Article  ADS  Google Scholar 

  28. K. Frahm, A. Müller–Groeling, J.-L. Pichard, Z. Phys. B 102, 261 (1997)

    Article  ADS  Google Scholar 

  29. J. Richert, H.A. Weidenmüller, J. Phys. A 36, 3281 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Richert, H.A. Weidenmüller, Ann. Phys. 306, 96 (2003)

    Article  ADS  Google Scholar 

  31. D. Weinmann, J.-L. Pichard, Phys. Rev. Lett. 77, 1556 (1996)

    Article  ADS  Google Scholar 

  32. E. Akkermans, J.-L. Pichard, Eur. Phys. J. B 1, 223 (1998)

    Article  ADS  Google Scholar 

  33. X. Waintal, J.-L. Pichard, Eur. Phys. J. B 6, 117 (1998)

    Article  ADS  Google Scholar 

  34. X. Waintal, D. Weinmann, J.-L. Pichard, Eur. Phys. J. B 7, 451 (1999)

    Article  ADS  Google Scholar 

  35. S. De Toro Arias, X. Waintal, J.-L. Pichard, Eur. Phys. J. B 10, 149 (1999)

    Article  ADS  Google Scholar 

  36. R.A. Römer, M. Schreiber, Phys. Rev. Lett. 78, 515 (1997)

    Article  ADS  Google Scholar 

  37. R.A. Römer, M. Schreiber, Phys. Rev. Lett. 78, 4890 (1997)

    Article  ADS  Google Scholar 

  38. K.M. Frahm, A. Müller-Groeling, J.-L. Pichard, D. Weinmann, Phys. Rev. Lett. 78, 4889 (1997)

    Article  ADS  Google Scholar 

  39. P.H. Song, F.V. Oppen, Phys. Rev. B 59, 46 (1999)

    Article  ADS  Google Scholar 

  40. P.H. Song, Doochul Kim, Phys. Rev. B 56, 12217 (1997)

    Article  ADS  Google Scholar 

  41. M. Leadbeater, R.A. Römer, M. Schreiber, Eur. Phys. J. B 8, 643 (1999)

    Article  ADS  Google Scholar 

  42. K.M. Frahm, Eur. Phys. J. B 10, 371 (1999)

    Article  ADS  Google Scholar 

  43. D.O. Krimer, R. Khomeriki, S. Flach, J. Exp. Theor. Phys. Lett. 94, 406 (2011)

    Article  Google Scholar 

  44. D.O. Krimer, S. Flach, Phys. Rev. B 91, 100201(R) (2015)

    Article  ADS  Google Scholar 

  45. K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 88, 337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Flach, M. Ivanchenko, R. Khomeriki, Europhys. Lett. 98, 66002 (2012)

    Article  ADS  Google Scholar 

  47. G.W. Stewart, Matrix Algorithms Volume II: Eigensystems (SIAM, 2001)

  48. K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 76, 57 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. H.R. Schwartz, Numerische Mathematik (B.G. Teubner, Stuttgart, 1986)

  50. K.M. Frahm, http://www.quantware.ups-tlse.fr/QWLIB/tipdisorder1d, Accessed February (2016)

  51. M. Ortuno, E. Cuevas, Europhys. Lett. 46, 224 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus M. Frahm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frahm, K. Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model. Eur. Phys. J. B 89, 115 (2016). https://doi.org/10.1140/epjb/e2016-70114-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70114-7

Keywords

Navigation