Quantum interference effects in Bi2Se3 topological insulator nanowires with variable cross-section lengths

  • Paolino Iorio
  • Carmine Antonio Perroni
  • Vittorio Cataudella
Regular Article


Stimulated by the recent realization of three dimensional topological insulator nanowire interferometers, a theoretical analysis of quantum interference effects on the low energy spectrum of Bi2Se3 nanowires is presented. The electronic properties are analyzed in nanowires with circular, square and rectangular cross-sections starting from a continuum three dimensional model with particular emphasis on magnetic and geometrical effects. The theoretical study is based on numerically exact diagonalizations of the discretized model for all the geometries. In the case of the cylindrical wire, an approximate analytical solution of the continuum model is also discussed. Although a magnetic field corresponding to half quantum flux is expected to close the band gap induced by Berry phase, in all the studied geometries with finite area cross-sections, the gap closes for magnetic fields typically larger than those expected. Furthermore, unexpectedly, due to geometrical quantum interference effects, for a rectangular wire with a sufficiently large aspect ratio and smaller side ranging from 50 Å and 100 Å, the gap closes for a specific finite area cross-section without the application of a magnetic field.


Mesoscopic and Nanoscale Systems 


  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S.-Q. Shen, Topological Insulators – Dirac Equation in Condensed Matters (Springer, 2012)Google Scholar
  7. 7.
    B.A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, 2013)Google Scholar
  8. 8.
    D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, L. Patthey, J. Osterwalder, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 460, 1101 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian, A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Nature 460, 1106 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava, M.Z. Hasan, Science 323, 919 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H. Zhang, C.-X. Liu, X.-L. Qi, Xi Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    V. Marigliano Ramaglia, D. Bercioux, V. Cataudella, G. De Filippis, C.A. Perroni, F. Ventriglia, Eur. Phys. J. B 36, 365 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    V. Marigliano Ramaglia, D. Bercioux, V. Cataudella, G. De Filippis, C.A. Perroni, J. Phys.: Condens. Matter 16, 9143 (2004)ADSGoogle Scholar
  15. 15.
    H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, Y. Cui, Nat. Mater. 9, 225 (2010)ADSGoogle Scholar
  16. 16.
    S.S. Hong, Y. Zhang, J.J. Cha, X.-L. Qi, Yi Cui, Nano Lett. 14, 2815 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O.G. Schmidt, B. Büchner, R. Giraud, Phys. Rev. Lett. 110, 186806 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    L. Zhang, J. Zhuang, Y. Xing, J. Li, J. Wang, H. Guo, Phys. Rev. B 89, 245107 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Bardarson, P.W. Brouwer, J.E. Moore, Phys. Rev. Lett. 105, 156803 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Yi Zhang, A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    C.A. Perroni, D. Bercioux, V. Marigliano Ramaglia, V. Cataudella, J. Phys.: Condens. Matter 19, 186227 (2007)ADSGoogle Scholar
  22. 22.
    V. Marigliano Ramaglia, V. Cataudella, G. De Filippis, C.A. Perroni, Phys. Rev. B 73, 155328 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    D. Bercioux, P. Lucignano, Rep. Prog. Phys. 78, 106001 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kundu, A. Zazunov, A. Levy Yeyati, T. Martin, R. Egger, Phys. Rev. B 83, 125429 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    K.-I. Imura, Y. Takane, A. Tanaka, Phys. Rev. B 84, 195406 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    O. Deb, A. Soori, D. Sen, J. Phys.: Condens. Matter 26, 315009 (2014)ADSGoogle Scholar
  27. 27.
    D. Kong, J.C. Randel, H. Peng, J.J. Cha, S. Meister, K. Lai, Y. Chen, Z.-X. Shen, H.C. Manoharan, Y. Cui, Nano Lett. 10, 329 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    W.-Y. Shan, H.-Z. Lu, S.-Q. Shen, New J. Phys. 12, 043048 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Ringel, Y.E. Kraus, A. Stern, Phys. Rev. B 86, 045102 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    W. Zhang, R. Yu, H.-J. Zhang, X. Dai, Z. Fang, New J. Phys. 12, 065013 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    L.J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, 1960)Google Scholar
  32. 32.
    B. Dwork, Trans. Amer. Math. Soc. 285, 497 (1984)MathSciNetGoogle Scholar
  33. 33.
    G. Arfken, Mathematical Methods for Physicists, 3rd edn. (Academic Press, Orlando, 1985)Google Scholar
  34. 34.
    H. Tang, D. Liang, R.L.J. Qiu, X.P.A. Gao, ACS Nano 5, 7510 (2011)CrossRefGoogle Scholar
  35. 35.
    F.W. Chen, L.A. Jauregui, Y. Tan, M. Manfra, G. Klimeck, Y.P. Chen, T. Kubis, Appl. Phys. Lett. 107, 121605 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    A. Richardella, A. Kandala, J.S. Lee, N. Samarth, APL Mater. 3, 083303 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    H. Zhu, C.A. Richter, E. Zhao, J.E. Bonevich, W.A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J.E. Maslar, D.E. Ioannou, Q. Li, Sci. Rep. 3, 1757 (2013)ADSGoogle Scholar
  38. 38.
    K.L. Chiu, Y. Xu, arXiv:1601.00986v1 (2016)
  39. 39.
    S. Cho, B. Dellabetta, R. Zhong, J. Schneeloch, T. Liu, G. Gu, M.J. Gilbert, N. Mason, Nat. Commun. 6, 7634 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Xu, Z. Gan, S.-C. Zhang, Phys. Rev. Lett. 112, 226801 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    J. Gooth, J.G. Gluschke, R. Zierold, M. Leijnse, H. Linke, K. Nielsch, Semicond. Sci. Technol. 30, 015015 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    A. Nocera, C.A. Perroni, V. Marigliano Ramaglia, V. Cataudella, Phys. Rev. B 86, 035420 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    G. Iadonisi, V. Cataudella, D. Ninno, M.L. Chiofalo, Phys. Lett. A 196, 359 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Paolino Iorio
    • 1
  • Carmine Antonio Perroni
    • 1
  • Vittorio Cataudella
    • 1
  1. 1.CNR-SPIN and Physics Department “Ettore Pancini”, Universitá degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. AngeloNapoliItaly

Personalised recommendations