Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field

  • Anton Tiutiunnyk
  • Volodymyr Akimov
  • Viktor Tulupenko
  • Miguel E. Mora-Ramos
  • Esin Kasapoglu
  • Alvaro L. Morales
  • Carlos Alberto Duque
Regular Article

Abstract

The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle’s orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x-y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    C.Y. Ngo, S.F. Yoon, W.J. Fan, S.J. Chua, Phys. Rev. B 74, 245331 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    E. Giraldo-Tobón, W. Ospina, G.L. Miranda-Pedraza, M.E. Mora-Ramos, Superlattice Microstruct. 83, 157 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S.H. Gong, J.H. Kim, Y.H. Ko, C. Rodriguez, J. Shin, Y.H. Lee, L.S. Dang, X. Zhang, Y.H. Cho, Proc. Natl. Acad. Sci. 112, 5280 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Kumagai, A. Tamura, J. Phys.: Condens. Matter 20, 285220 (2008)Google Scholar
  5. 5.
    J. Nelayah, L. Gu, W. Sigle, C.T. Koch, I. Pastoriza-Santos, L.M. Liz-Marzán, P.A. van Aken, Opt. Lett. 34, 1003 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    H.Y. Xu, Z. Liu, Y. Liang, Y.Y. Rao, X.T. Zhang, S.K. Hark, Appl. Phys. Lett. 95, 133108 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M. Jo, T. Mano, M. Abbarchi, T. Kuroda, Y. Sakuma, K. Sakoda, Cryst. Growth Des. 12, 1411 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Jo, T. Mano, M. Abbarchi, T. Kuroda, K. Sakoda, AIP Conf. Proc. 1598, 71 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    G. Eckhardt, R.W. Hellwarth, F.J. McClung, S.E. Schwarz, D. Weiner, E.J. Woodbury, Phys. Rev. Lett. 9, 455 (1962)ADSCrossRefGoogle Scholar
  10. 10.
    K.O. Hill, B.S. Kawasaki, D.C. Johnson, Appl. Phys. Lett. 29, 181 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Ferrara, I. Rendina, L. Sirleto, in Nonlinear Optics (InTech, Croatia, 2012), pp. 53–70Google Scholar
  12. 12.
    J.M. Elzerman, K.M. Weiss, J. Miguel-Sanchez, A. Imamoğlu, Phys. Rev. Lett. 107, 017401 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, A. Madhukar, Appl. Phys. Lett. 77, 3746 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    A. Tiutiunnyk, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, C.A. Duque, Physica E 60, 127 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Tiutiunnyk, V. Tulupenko, V. Akimov, R. Demediuk, A.L. Morales, M.E. Mora-Ramos, A. Radu, C.A. Duque, Superlattice and Microstruct. 87, 131 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    N. Ha, T. Mano, Y.-L. Chou, Y.-N. Wu, S.-J. Cheng, J. Bocquel, P.M. Koenraad, A. Ohtake, Y. Sakuma, K. Sakoda, T. Kuroda, Phys. Rev. B 92, 075306 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    W.-K. Li, S.M. Blinder, J. Math. Phys. 26, 2784 (1985)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Comas, C. Trallero Giner, R. Pérez-Alvarez, J. Phys. C 19, 6479 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    R. Enderlein, Phys. Stat. Sol. B 70, 263 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    I.G. Lang, S.T. Pavlov, A.V. Prokaznickov, A.V. Goltsev, Phys. Stat. Sol. B 127, 187 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    R. Riera, J.L. Marín, R.A. Rosas, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H.S. Nalwa (Academic Press, New York, 2001), Vol. 6, pp. 1–117Google Scholar
  22. 22.
    R. Betancourt-Riera, R. Riera, J.L. Marín, R. Rosas, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Valencia, 2003), Vol. 3, pp. 101–137Google Scholar
  23. 23.
    M.J. Karimi, G. Rezaei, H. Pakarzadeh, Phys. Lett. A 377, 2164 (2013)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J.B. Khurgin, G. Sun, L.R. Friedman, R.A. Soref, J. Appl. Phys. 78, 7398 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    I. Vurgaftman, J.R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sun, S.-W. Gu, Commun. Theor. Phys. 17, 229 (1992)CrossRefGoogle Scholar
  27. 27.
    M.E. Reimer, M. Korkusiński, D. Dalacu, J. Lefebvre, J. Lapointe, P.J. Poole, G.C. Aers, W.R. McKinnon, P. Hawrylak, R.L. Williams, Phys. Rev. B 78, 195301 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    T. Nakaoka, Y. Tamura, T. Saito, T. Miyazawa, K. Watanabe, Y. Ota, S. Iwamoto, Y. Arakawa, Appl. Phys. Lett. 99, 181109 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    V. Stavarache, D. Reuter, A.D. Wieck, M. Schwab, D.R. Yakovlev, R. Oulton, M. Bayer, Appl. Phys. Lett. 89, 123105 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M. Scheinert, H. Sigg, S. Tsujino, M. Giovannini, J. Faist, Appl. Phys. Lett. 91, 131108 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    O. Gauthier-Lafaye, P. Boucaud, F.H. Julien, S. Sauvage, S. Cabaret, J.-M. Lourtioz, V. Thierry-Mieg, R. Planel, Appl. Phys. Lett. 71, 3619 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    G. Sun, J.B. Khurgin, L. Friedman, R.A. Soref, J. Opt. Soc. Am. B 15, 648 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anton Tiutiunnyk
    • 1
    • 2
  • Volodymyr Akimov
    • 1
    • 2
    • 3
  • Viktor Tulupenko
    • 1
    • 2
  • Miguel E. Mora-Ramos
    • 4
  • Esin Kasapoglu
    • 5
  • Alvaro L. Morales
    • 1
  • Carlos Alberto Duque
    • 1
  1. 1.Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeAMedellínColombia
  2. 2.Department of PhysicsDonbass State Engineering AcademyKramatorskUkraine
  3. 3.Universidad de MedellínMedellínColombia
  4. 4.Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de MorelosCuernavacaMexico
  5. 5.Cumhuriyet University, Physics DepartmentSivasTurkey

Personalised recommendations