Advertisement

Analysis of noise-induced eruptions in a geyser model

  • Dmitri V. Alexandrov
  • Irina A. Bashkirtseva
  • Lev B. Ryashko
Regular Article

Abstract

Motivated by important geophysical applications we study a non-linear model of geyser dynamics under the influence of external stochastic forcing. It is shown that the deterministic dynamics is substantially dependent on system parameters leading to the following evolutionary scenaria: (i) oscillations near a stable equilibrium and a transient tendency of the phase trajectories to a spiral sink or a stable node (pre-eruption regime), and (ii) fast escape from equilibrium (eruption regime). Even a small noise changes the system dynamics drastically. Namely, a low-intensity noise generates the small amplitude stochastic oscillations in the regions adjoining to the stable equilibrium point. A small buildup of noise intensity throws the system over its separatrix and leads to eruption. The role of the friction coefficient and relative pressure in the deterministic and stochastic dynamics is studied by direct numerical simulations and stochastic sensitivity functions technique.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S. Hurwitz, R.A. Sohn, K. Luttrell, M. Manga, J. Geophys. Res. Solid Earth 119, 1718 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    S. Hurwitz, A. Kumar, R. Taylor, H. Heasler, Geology 36, 451 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J. Vandemeulebrouck, R.A. Sohn, M.L. Rudolph, S. Hurwitz, M. Manga, M.J.S. Johnston, S.A. Soule, D. McPhee, J.M.G. Glen, L. Karlstrom, F. Murphy, J. Geophys. Res. Solid Earth 119, 8688 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Glennon, R.M. Pfaff, The GOSA Trans. 9, 184 (2004)Google Scholar
  5. 5.
    P.G. Silver, N.J. Valette-Silver, Science 257, 1364 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    J.S. Rhinehart, Science 177, 342 (1972)ADSGoogle Scholar
  7. 7.
    S. Rojstaczer, D.L. Galloway, S.E. Ingebritsen, D.M. Rubin, Geophys. Res. Lett. 30, 1953 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    J.S. Rhinehart, Geysers and Geothermal Energy (Springer-Verlag, 1980)Google Scholar
  9. 9.
    S. Husen, R. Taylor, R.B. Smith, H. Healser, Geology 32, 537 (2004)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    K.D. O’Hara, E.K. Esawi, GSA Today 23, 4 (2013)CrossRefGoogle Scholar
  12. 12.
    P.S. Landa, D.A. Vlasov, Dokl. Math. 73, 623 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Horstemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)Google Scholar
  14. 14.
    D.V. Alexandrov, I.A. Bashkirtseva, L.B. Ryashko, Eur. Phys. J. B 88, 304 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Y.C. Lai, T. Tél, Transient Chaos: Complex Dynamics on Finite Time Scales (Springer, Berlin, 2011)Google Scholar
  16. 16.
    I. Bashkirtseva, G. Chen, L. Ryashko, Chaos 22, 033104 (2012)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Stochastic Resonance: from Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (Cambridge University Press, Cambridge, 2008)Google Scholar
  19. 19.
    B. Lindner, J. Garcia-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    D.V. Alexandrov, I.A. Bashkirtseva, L.B. Ryashko, Eur. Phys. J. B 88, 106 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Menchon, H.S. Wio, Eur. Phys. J. B 87, 184 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Dowden, P. Kapadia, G. Brown, H. Rymer, J. Geophys. Res. Solid Earth 96, 18059 (1991)CrossRefGoogle Scholar
  24. 24.
    Y. Sang, M. Dubé, M. Grant, Phys. Rev. E 77, 036123 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    M.H. Müser, Phys. Rev. E 84, 125419 (2011)CrossRefGoogle Scholar
  26. 26.
    S.E. Ingebritsen, S.A. Rojstaczer, J. Geophys. Res. Solid Earth 101, 21891 (1996)CrossRefGoogle Scholar
  27. 27.
    L. Karlstrom, S. Hurwitz, R. Sohn, J. Vandemeulebrouck, F. Murphy, M.L. Rudolph, M.J.S. Johnston, M. Manga, R.B. McCleskey, J. Geophys. Res. Solid Earth 118, 4048 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    E. Balcerak, C. Schultz, Eos 94, 296 (2013)Google Scholar
  29. 29.
    J. Garcia-Ojalvo, J. Sancho, Noise in Spatially Extended Systems (Springer, 1999)Google Scholar
  30. 30.
    S. Fedotov, I. Bashkirtseva, L. Ryashko, Phys. Rev. E 66, 066310 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    S. Fedotov, I. Bashkirtseva, L. Ryashko, Phys. Rev. E 73, 066307 (2006)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1984)Google Scholar
  33. 33.
    I.A. Bashkirtseva, L.B. Ryashko, Chaos Sol. Fract. 26, 1437 (2005)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    I.A. Bashkirtseva, L.B. Ryashko, Chaos 21, 047514 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dmitri V. Alexandrov
    • 1
  • Irina A. Bashkirtseva
    • 1
  • Lev B. Ryashko
    • 1
  1. 1.Department of Mathematical PhysicsUral Federal UniversityEkaterinburgRussia

Personalised recommendations