Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications

  • Yun Chen
  • Hui Yang
Regular Article


Engineered and natural systems often involve irregular and self-similar geometric forms, which is called fractal geometry. For instance, precision machining produces a visually flat surface, while which looks like a rough mountain in the nanometer scale under the microscope. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Cardiac electrical activity exhibits highly nonlinear and fractal behaviors. Although space-time dynamics occur on the fractal geometry, e.g., chemical etching on the surface of machined parts and electrical conduction in the heart, most of existing works modeled space-time dynamics (e.g., reaction, diffusion and propagation) on the Euclidean geometry (e.g., flat planes and rectangular volumes). This brings inaccurate approximation of real-world dynamics, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we developed novel methods and tools for the numerical simulation and pattern recognition of spatiotemporal dynamics on fractal surfaces of complex systems, which include (1) characterization and modeling of fractal geometry, (2) fractal-based simulation and modeling of spatiotemporal dynamics, (3) recognizing and quantifying spatiotemporal patterns. Experimental results show that the proposed methods outperform traditional modeling approaches based on the Euclidean geometry, and provide effective tools to model and characterize space-time dynamics on fractal surfaces of complex systems.


Statistical and Nonlinear Physics 


  1. 1.
    U. Phatak, S.T.S. Bukkapatnam, Z. Kong, R. Komanduri, Int. J. Machine Tools Manufact. 49, 171 (2009)CrossRefGoogle Scholar
  2. 2.
    D. Du, H. Yang, S. Norring, E. Bennett, IEEE J. Biomed. Health Inform. 18, 205 (2013)Google Scholar
  3. 3.
    American Heart Association Writing Group, Circulation 129, e28 (2014)Google Scholar
  4. 4.
    P.C. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Nature 399, 461 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    A.L. Goldberger, D.R. Rigney, B.J. West, Scientific American 262, 42 (1990)CrossRefGoogle Scholar
  6. 6.
    T.B. Tenenbaum, V. de Silva, J.C. Langford, Science 290, 2319 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Chen, H. Yang, IEEE Trans. Automat. Sci. Eng. 13, 215 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Chen, G. Liu, H. Yang, in Proceedings of 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, pp. 626–631Google Scholar
  9. 9.
    Y. Ding, E.A. Elsayed, S. Kumara, J.C. Lu, F. Niu, J. Shi, IEEE Trans. Automat. Sci. Eng. 3, 344 (2006)CrossRefGoogle Scholar
  10. 10.
    N. Serban, Ann. Appl. Stat. 5, 1699 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    B.B. Mandelbrot, The fractal Geometry of Nature (Freeman, New York, 1982)Google Scholar
  12. 12.
    C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E. 49, 1685 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Haussdorff, Y. Ashkenazy, C.-K. Peng, P.C. Ivanov, H.E. Stanley, A.L. Goldberger, Physica A 302, 138 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    W. Dierking, IEEE Trans. Geosci. Remote Sensing 37, 2397 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    X. Yang, X. Ning, J. Wang, Physica A 384, 413 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A. Turiel, C.J. Perez-Vicente, Physica A 322, 629 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Blacher, F. Brouers, G. Ananthakrishna, Physica A 185, 28 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    N.C. Kenkel, D.J. Walker, Coenoses 11, 77 (1996)Google Scholar
  19. 19.
    N.S. Lam, H. Qiu, D.A. Quattrochi, C.W. Emerson, Cartography and Geograpghyic Information Science 29, 25 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Fournier, D. Fussel, L. Carpenter, Commun. ACM 25, 371 (1982)CrossRefGoogle Scholar
  21. 21.
    D. Saupe, Algorithms for random fractals, in The Science of Fractal Images, edited by H.O. Peitgen, D. Saupe (Spriger-Verlag, New York, 1988), pp. 71–136Google Scholar
  22. 22.
    D.C. Lin, R.L. Hughson, IEEE Trans. Biomed. Eng. 49, 97 (2002)CrossRefGoogle Scholar
  23. 23.
    D.C. Lin, R.L. Hughson, Phys. Rev. Lett. 86, 1650 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    I.T. Jolliffe, Principal Component Analysis (Springer-Verlag, New York, 1989)Google Scholar
  25. 25.
    T. Cox, M. Cox, Multidimensional Scaling (Chapman & Hall, London, 1994)Google Scholar
  26. 26.
    T. Kohonen, Self-Organizing Maps (Springer, New York, 1997)Google Scholar
  27. 27.
    H. Yang, Y. Chen, F. Leonelli, Characterization and Monitoring of Nonlinear Dynamics and Chaos in Complex Physiological Systems, in Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, edited by H. Yang, E.K. Lee (Wiley, New York, 2016)Google Scholar
  28. 28.
    E.W. Dijkstra, Numerische Mathematik 1, 269 (1959)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.M. Rogers, A.D. McCulloch, IEEE Trans. Biomed. Eng. 41, 743 (1994)CrossRefGoogle Scholar
  30. 30.
    H. Yang, G. Liu, Chaos 23, 043116 (2013)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Liu, H. Yang, in IEEE International Conference on Automation Science and Engineering (CASE) (Gothenburg, Sweden, 2015), pp. 1084–1089Google Scholar
  32. 32.
    A.M. Pertsov, J.M. Davidenko, R. Salomonsz, W.T. Baxter, J. Jalife, Circulation Res. 72, 632 (1993)CrossRefGoogle Scholar
  33. 33.
    A.J. Pullan, M.L. Buist, L.K. Cheng, Mathematically modelling the electrical activity of the heart: from cell to body surface and back again (World Science, Singapore, 2005)Google Scholar
  34. 34.
    F.B. Sachse, Computational cardiology: modeling of anatomy, electrophysiology, and mechanics (Springer, Berlin, 2004)Google Scholar
  35. 35.
    D. Yu, D. Du, H. Yang, Y. Tu, in Proceedings of Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Chicago, IL, 2014, pp. 4315–4319Google Scholar
  36. 36.
    Y. Zhang, C. Bajaj, Comput. Methods Appl. Mech. Eng. 195, 942 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Jiangsu University of Science and TechnologyZhenjiangP.R. China
  2. 2.Complex Systems Monitoring, Modeling and Control Laboratory, Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations