Normal state incoherent pseudogap in FeSe superconductor

Regular Article


The normal state of Iron chalcogenide superconductors show a range of unconventional features. Bad-metallic resistivity and proximity to insulating state manifest themselves in spectral and transport responses. In particular, obervation of low-energy pseudogap feature in the normal state raises the issue of the nature of processes underpinning its emergence as well as its relation to unconventional superconductivity. Here, using the LDA+DMFT method, we show how correlation-induced orbital-selective pseudogap-like physics underpin these incoherent features in stoichimetric and electron-doped FeSe superconductor. We discuss the pseudogap regime microscopically, along with implications for the superconductive instability.


Solid State and Materials 


  1. 1.
    N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    D.C. Johnston, Adv. Phys. 59, 803 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J.F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia, Nat. Mater. 14, 285 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    K. Deguchi, Y. Takano, Y. Mizuguchi, Sci. Technol. Adv. Mater. 13, 054303 (2012)CrossRefGoogle Scholar
  6. 6.
    Q. Si, E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Baskaran, J. Phys. Soc. Jpn 77, 113713 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K. Haule, J. Shim, G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Wu, P. Phillips, A. Castro-Neto, Phys. Rev. Lett. 101, 126401 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Laad, L. Craco, S. Leoni, H. Rosner, Phys. Rev. B 79, 024515 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M.S. Laad, L. Craco, Phys. Rev. Lett. 103, 017002 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V. Cvetkovic, Z. Tesanovic, Phys. Rev. B 80, 024512 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontain, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F. Wang, H. Zhai, Y. Ran, A. Vishwanath, D.-H. Lee, Phys. Rev. Lett. 102, 047005 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.-X. Zhu, R. Yu, H. Wang, L.L. Zhao, M.D. Jones, J. Dai, E. Abrahams, E. Morosan, M. Fang, Q. Si, Phys. Rev. Lett. 104, 216405 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    L. Craco, M.S. Laad, S. Leoni, J. Phys.: Condens. Matter 26, 145602 (2014)Google Scholar
  18. 18.
    J. Wen, G. Xu, G. Gu, J.M. Tranquada, R.J. Birgeneau, Rep. Prog. Phys. 74, 124503 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Gawryluk, J. Fink-Finowicki, A. Wiśniewski, R. Puźniak, V. Domukhovski, R. Diduszko, M. Kozlowski, M. Berkowski, Supercond. Sci. Technol. 24, 065011 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S.C. Riggs, J.B. Kemper, Y. Jo, Z. Stegen, L. Balicas, G.S. Boebinger, F.F. Balakirev, A. Migliori, H. Chen, R.H. Liu, X.H. Chen, Phys. Rev. B 79, 212510 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, J. Phys. Soc. Jpn 78, 074712 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    C. Dong, H. Wang, Z. Li, J. Chen, H.Q. Yuan, M. Fang, Phys. Rev. B 84, 224506 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A.J. Williams, T.M. McQueen, V. Ksenofontov, C. Felser, R.J. Cava, J. Phys: Condens. Matter 21, 305701 (2009)Google Scholar
  25. 25.
    T. Imai, K. Ahilan, F.L. Ning, T.M. McQueen, R.J. Cava, Phys. Rev. Lett. 102, 177005 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G.F. Chen, Z.G. Chen, J. Dong, W.Z. Hu, G. Li, X.D. Zhang, P. Zheng, J.L. Luo, N.L. Wang, Phys. Rev. B 79, 140509(R) (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Moon et al., Phys. Rev. Lett. 106, 217001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    A. Yamasaki, S. Imada, K. Takase, T. Muro, K. Kato, H. Kobori, A. Sugimura, N. Umeyama, H. Sato, Y. Hara, N. Miyakawa, S.I. Ikeda, Phys. Rev. B 82, 184511 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T. Qian, G.F. Chen, J.L. Luo, N.L. Wang, H. Ding, T. Takahashi, Phys. Rev. Lett. 105, 197001 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    P.H. Lin, Y. Texier, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, E. Giannini, M. Grioni, V. Brouet, Phys. Rev. Lett. 111, 217002 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    I. Pallecchi, M. Tropeano, C. Ferdeghini, G. Lamura, A. Martinelli, A. Palenzona, M. Putti, J. Supercond. Nov. Magn. 24, 1751 (2011)CrossRefGoogle Scholar
  32. 32.
    I. Pallecchi, G. Lamura, M. Tropeano, M. Putti, R. Viennois, E. Giannini, D. van der Marel, Phys. Rev. B 80, 214511 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Y.J. Song, J.B. Hong, B.H. Min, K.J. Lee, M.H. Jung, S.-J. Rhyee, S.Y. Kwon, J. Korean Phys. Soc. 59, 312 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Craco, S. Leoni, Mater. Res. Express 1, 036001 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M. Aichhorn, S. Biermann, T. Miyake, A. Georges, M. Imada, Phys. Rev. B 82, 064504 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A. Liebsch, H. Ishida, Phys. Rev. B 82, 155106 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Z.P. Yin, K. Haule, G. Kotliar, Nat. Mater. 10, 932 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    L. Craco, M.S. Laad, S. Leoni, Europhys. Lett. 91, 27001 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A. Pourret, L. Malone, A.B. Antunes, C.S. Yadav, P.L. Paulose, B. Fauqué, K. Behnia, Phys. Rev. B 83, 020504(R) (2011)ADSCrossRefGoogle Scholar
  40. 40.
    G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    L. Craco, M.S. Laad, S. Leoni, J. Phys.: Conf. Ser. 487, 012017 (2014)ADSGoogle Scholar
  42. 42.
    C. Grenzebach, F.B. Anders, G. Czycholl, T. Pruschke, Phys. Rev. B 74, 195119 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    K. Haule, G. Kotliar, in Properties and Applications of Thermoelectric Materials, edited by V. Zlatic, A.C. Hewson (Springer, 2009)Google Scholar
  44. 44.
    K. Haule, G. Kotliar, New J. Phys. 11, 025021 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    R.R Heikes, R.W. Ure Jr., Thermoelectricity: Science and Engineering (Interscience Publishers, New York, London, 1961)Google Scholar
  46. 46.
    W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62, 6869 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    A. Khurana, Phys. Rev. Lett. 64, 1990 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    P. Phillips, T.-P. Choy, R.G. Leigh, Rep. Prog. Phys. 72, 036501 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    E. Ieki, K. Nakayama, Y. Miyata, T. Sato, H. Miao, N. Xu, X.-P. Wang, P. Zhang, T. Qian, P. Richard, Z.-J. Xu, J.S. Wen, G.D. Gu, H.Q. Luo, H.-H. Wen, H. Ding, T. Takahashi, Phys. Rev. B 89, 140506(R) (2014)ADSCrossRefGoogle Scholar
  50. 50.
    L. Craco, S. Leoni, Europhys. Lett. 92, 67003 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    P.W. Anderson, Nat. Phys. 2, 62 (2006)CrossRefGoogle Scholar
  52. 52.
    L. Boeri, O. Dolgov, A. Golubov, Phys. Rev. Lett. 101, 026403 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, F. Steglich, Phys. Rev. B 79, 153308 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    P. Sun, W. Xu, J.M. Tomczak, G. Kotliar, M. Sondergaard, B.B. Iversen, F. Steglich, Phys. Rev. B 88, 245203 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685(R) (1997)ADSCrossRefGoogle Scholar
  57. 57.
    P.W. Anderson, The Theory of Superconductivity in the High Tc Cuprate Superconductors (Princeton U. Press, 1998)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Instituto de Física, Universidade Federal de Mato GrossoCuiabáBrazil
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations