Long range height variations in surface growth

Regular Article


This paper presents novel results obtained from numerical investigation of surfaces generated by the two-dimensional isotropic Kuramoto-Sivashinsky equation with an additional nonlinear term and a single independent parameter. Surface roughness exhibits a certain dependence on the system size that indicates power-law shape of the surface spectrum for small wave numbers. This leads to a conclusion that although cellular surface patterns of definite scale dominate in the range of short distances, there are also scale-free long-range height variations present in large systems. The dependence of the spectral exponent on the equation parameter gives new insight into the influence of the additional term in the equation on the scaling behavior for large systems.


Statistical and Nonlinear Physics 


  1. 1.
    G.I. Sivashinsky, Acta Astronautica 6, 569 (1979)CrossRefADSMATHGoogle Scholar
  2. 2.
    Y. Kuramoto, T. Tsuzuki, Prog. Theor. Phys. 55, 356 (1976)CrossRefADSGoogle Scholar
  3. 3.
    I. Procaccia, M.H. Jensen, V.S. L’vov, K. Sneppen, R. Zeitak, Phys. Rev. A 46, 3220 (1992)CrossRefADSGoogle Scholar
  4. 4.
    C. Jayaprakash, F. Hayot, R. Pandit, Phys. Rev. Lett. 71, 12 (1993)CrossRefADSGoogle Scholar
  5. 5.
    M. Paniconi, K.R. Elder, Phys. Rev. E 56, 2713 (1997)CrossRefADSGoogle Scholar
  6. 6.
    M. Rost, J. Krug, Phys. Rev. Lett. 75, 3894 (1995)CrossRefADSGoogle Scholar
  7. 7.
    K.B. Lauritsen, R. Cuerno, H.A. Makse, Phys. Rev. E 54, 3577 (1996)CrossRefADSGoogle Scholar
  8. 8.
    M. Raible, S.G. Mayr, S.J. Linz, M. Moske, P. Hänggi, K. Samwer, Europhys. Lett. 50, 61 (2000)CrossRefADSGoogle Scholar
  9. 9.
    M. Raible, S.J. Linz, P. Hänggi, Phys. Rev. E 64, 031506 (2001)CrossRefADSGoogle Scholar
  10. 10.
    R. Gago, L. Vazquez, O. Plantevin, J.A. Sanchez-Garcia, M. Varela, M.C. Ballesteros, J.M. Albella, T.H. Metzger, Phys. Rev. B 73, 155414 (2006)CrossRefADSGoogle Scholar
  11. 11.
    R. Cuerno, M. Castro, J. Munoz-Garcia, R. Gago, L. Vazquez, Nucl. Instrum. Methods Phys. Res. B 269, 894 (2011)CrossRefADSGoogle Scholar
  12. 12.
    C. Diddens, S.J. Linz, Eur. Phys. J. B 88, 190 (2015)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. Raible, S.J. Linz, P. Hänggi, Acta Physica Polonica B 33, 1049 (2002)ADSGoogle Scholar
  14. 14.
    A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)Google Scholar
  15. 15.
    M. Raible, S.J. Linz, P. Hänggi, Phys. Rev. E 62, 1691 (2000)CrossRefADSGoogle Scholar
  16. 16.
    G. Palasantzas, Phys. Rev. B 48, 14472 (1993)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and Astronomy, Vilnius UniversityVilniusLithuania

Personalised recommendations