The effect of temperature dependence of viscosity on a Brownian heat engine

Regular Article

Abstract

We modeled a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a spatially varying temperature. The strength for the viscous friction γ(x) is considered to decrease exponentially when the temperature T(x) of the medium increases (γ(x) = B e AT(x)) as proposed originally by Reynolds [O. Reynolds, Phil. Trans. R. Soc. London 177, 157 (1886)]. Our result depicts that the velocity of the motor is considerably higher when the viscous friction is temperature dependent than that of the case where the viscous friction is temperature independent. The dependence of the efficiency η as well as the coefficient of performance of the refrigerator P ref on model parameters is also explored. If the motor designed to achieve a high velocity against a frictional drag, in the absence of external load f, we show that Carnot efficiency or Carnot refrigerator is unattainable even at quasistatic limit as long as the viscous friction is temperature dependent A ≠ 0. On the contrary, in the limit A → 0 or in general in the presence of an external load (for any A) f ≠ 0, at quasistatic limit, Carnot efficiency or Carnot refrigerator is attainable as long as the heat exchange via kinetic energy is omitted. For all cases, far from quasistatic limit, the efficiency and the coefficient of performance of the refrigerator are higher for constant γ case than the case where γ is temperature dependent. On the other hand, if one includes the heat exchange at the boundary of the heat baths, Carnot efficiency or Carnot refrigerator is unattainable even at quasistatic limit. Moreover, the dependence for the optimized and maximum power efficiencies on the determinant model parameters is explored.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T. Hondou, K. Sekimoto, Phys. Rev. E 62, 6021 (2000)CrossRefADSGoogle Scholar
  2. 2.
    A.G. Marin, J.M. Sancho, Phys. Rev. E 74, 062102 (2006)CrossRefADSGoogle Scholar
  3. 3.
    N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)CrossRefADSGoogle Scholar
  4. 4.
    N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)CrossRefADSGoogle Scholar
  5. 5.
    F. Zhan, N. Li, S. Kohler, P. Hänggi, Phys. Rev. E 80, 061115 (2009)CrossRefADSGoogle Scholar
  6. 6.
    M. Büttiker, Z. Phys. B 68, 161 (1987)CrossRefADSGoogle Scholar
  7. 7.
    N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988)CrossRefGoogle Scholar
  8. 8.
    R. Landauer, J. Stat. Phys. 53, 233 (1988)CrossRefADSGoogle Scholar
  9. 9.
    R. Landauer, Phys. Rev. A 12, 636 (1975)CrossRefADSGoogle Scholar
  10. 10.
    R. Landauer, Helv. Phys. Acta 56, 847 (1983)Google Scholar
  11. 11.
    P. Reimann, R. Bartussek, R. Häussler, P. Hänggi, Phys. Lett. A 215, 26 (1996)CrossRefADSGoogle Scholar
  12. 12.
    P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. (Leipzig) 14, 51 (2005)CrossRefADSMATHGoogle Scholar
  13. 13.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)CrossRefADSGoogle Scholar
  14. 14.
    M. Asfaw, M. Bekele, Eur. Phys. J. B 38, 457 (2004)CrossRefADSGoogle Scholar
  15. 15.
    M. Asfaw, M. Bekele, Phys. Rev. E 72, 056109 (2005)CrossRefADSGoogle Scholar
  16. 16.
    M. Asfaw, M. Bekele, Physica A 384, 346 (2007)CrossRefADSGoogle Scholar
  17. 17.
    M. Matsuo, S. Sasa, Physica A 276, 188 (1999)CrossRefADSGoogle Scholar
  18. 18.
    I. Derènyi, R.D. Astumian, Phys. Rev. E 59, R6219 (1999)CrossRefADSGoogle Scholar
  19. 19.
    I. Derènyi, M. Bier, R.D. Astumian, Phys. Rev. Lett. 83, 903 (1999)CrossRefADSGoogle Scholar
  20. 20.
    J.M. Sancho, M.S. Miguel, D. Dürr, J. Stat. Phys. 28, 291 (1982)CrossRefADSMATHGoogle Scholar
  21. 21.
    B.Q. Ai, H.Z. Xie, D.H. Wen, X.M. Liu, L.G. Liu, Eur. Phys. J. B 48, 101 (2005)CrossRefADSGoogle Scholar
  22. 22.
    M. Asfaw, Eur. Phys. J. B 86, 189 (2013)CrossRefADSGoogle Scholar
  23. 23.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)CrossRefADSGoogle Scholar
  24. 24.
    M. Asfaw, Phys. Rev. E 89, 012143 (2014)CrossRefADSGoogle Scholar
  25. 25.
    O. Reynolds, Phil. Trans. R. Soc. London 177, 157 (1886)CrossRefGoogle Scholar
  26. 26.
    F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)CrossRefADSGoogle Scholar
  27. 27.
    P. Hänggi, Helv. Phys. Acta 51, 183 (1978)MathSciNetGoogle Scholar
  28. 28.
    P. Hänggi, Helv. Phys. Acta 53, 491 (1980)MathSciNetGoogle Scholar
  29. 29.
    J.M. Sancho, M.S. Miguel, D. Duerr, J. Stat. Phys. 28, 291 (1982)CrossRefADSMATHGoogle Scholar
  30. 30.
    K. Sekimoto, J. Phys. Soc. Jpn 66, 1234 (1997)CrossRefADSGoogle Scholar
  31. 31.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)CrossRefADSGoogle Scholar
  32. 32.
    M. Matsuo, Shin-ichi Sasa, Physica A 276, 188 (2000)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia State University Dominguez HillsCarsonUSA
  2. 2.National Center for Biotechnology Information, National Library of Medicine and National Institute of HealthBethesdaUSA

Personalised recommendations