Calculation of the cyclotron transition line-width by confined phonon scattering using the projection-reduction method

  • Nam Lyong Kang
  • Jin Young Youn
  • Mi Seon Baek
  • Eun Ji Han
Regular Article


A formula to obtain the cyclotron transition line-widths for a system of electrons interacting with confined-acoustic phonons through the deformation potential in a quantum well is derived using the projection-reduction method. The result contains the distribution functions for the electrons and phonons properly. Therefore, the phonon absorption and emission processes can be explained in an organized manner and the result can be represented diagrammatically, through which insight into the quantum dynamics of electrons in a solid can be obtained. The formula is used to calculate the cyclotron transition line-widths in silicon. It is shown that the line-width increases with increasing temperature but the well width and magnetic field dependence of the line-width are complicated. It is also shown that only a few low-energy confined modes contribute significantly to the line-widths.


Solid State and Materials 


  1. 1.
    A. Kawabata, J. Phys. Soc. Jpn 23, 999 (1967)CrossRefADSGoogle Scholar
  2. 2.
    S. Badjou, P.N. Argyres, Phys. Rev. B 35, 5964 (1987) CrossRefADSGoogle Scholar
  3. 3.
    N.L. Kang, Y.J. Cho, S.D. Choi, Prog. Theor. Phys. 96, 307 (1996)CrossRefADSGoogle Scholar
  4. 4.
    J. Seyler, M.N. Wybourne, Phys. Rev. Lett. 69, 1427 (1992) CrossRefADSGoogle Scholar
  5. 5.
    C.M. Sotomayor Torres, A. Zwick, F. Poinsotte, J. Groenen, M. Prunnila, J. Ahopelto, A. Mlayah, V. Paillard, Phys. Stat. Sol. C 1, 2609 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Cuffe, O. Ristow, E. Chávez, A. Shchepetov, P.-O. Chapuis, F. Alzina, M. Hettich, M. Prunnila, J. Ahopelto, T. Dekorsy, C.M.S. Sotomayor Torres, Phys. Rev. Lett. 110, 095503 (2013)CrossRefADSGoogle Scholar
  7. 7.
    D.O. Sigle, J.T. Hugall, S. Ithurria, B. Dubertret, J.J. Baumberg, Phys. Rev. Lett. 113, 087402 (2014) CrossRefADSGoogle Scholar
  8. 8.
    D.M. Sagar, J.M. Atkin, P.K.B. Palomaki, N.R. Neale, J.L. Blackburn, J.C. Johnson, A.J. Nozik, M.B. Raschke, M.C. Beard, Nano Lett. 15, 1511 (2015) CrossRefADSGoogle Scholar
  9. 9.
    M. Singh, B. Tanatar, Phys. Rev. B 41, 12781 (1990) CrossRefADSGoogle Scholar
  10. 10.
    J.S. Bhat, S.S. Kubakaddi, B.G. Mulimani, J. Appl. Phys. 70, 2216 (1991) CrossRefADSGoogle Scholar
  11. 11.
    F. Gámiz, M.V. Fischetti, J. Appl. Phys. 89, 5478 (2001) CrossRefADSGoogle Scholar
  12. 12.
    D. Esseni, M. Mastrapasqua, G.K. Celler, C. Fiegna, L. Selmi, E. Sangiorgi, IEEE Trans. Electron Devices 48, 2842 (2001) CrossRefADSGoogle Scholar
  13. 13.
    N. Bannov, V. Mitin, M. Stroscio, Phys. Stat. Sol. B 183, 131 (1994) CrossRefADSGoogle Scholar
  14. 14.
    J.S. Bhat, R.A. Nesargi, B.G. Mulimani, Phys. Rev. B 73, 235351 (2006) CrossRefADSGoogle Scholar
  15. 15.
    L. Donetti, F. Gámiz, J.B. Roldán, A. Godoy, J. Appl. Phys. 100, 013701 (2006) CrossRefADSGoogle Scholar
  16. 16.
    A.A. Balandin, E.P. Pokatilov, D.L. Nika, J. Nanoelec. Optoelec. 2, 140 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nam Lyong Kang
    • 1
  • Jin Young Youn
    • 2
  • Mi Seon Baek
    • 2
  • Eun Ji Han
    • 2
  1. 1.Department of Nanomechatronics EngineeringPusan National UniversityMiryangRepublic of Korea
  2. 2.Department of Applied NanosciencePusan National UniversityMiryangRepublic of Korea

Personalised recommendations