Advertisement

An example of temporal coarse-graining of entropy production

Regular Article

Abstract

In coarse-grained systems, some entropy production can be hidden, because the original dynamics are destroyed. In the present work, we introduce an example of a proper time-scale in which entropy production of even parity is not hidden, though the original dynamics are destroyed by temporal coarse-graining.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    K. Kawaguchi, Y. Nakayama, Phys. Rev. E 88, 022147 (2013) CrossRefADSGoogle Scholar
  2. 2.
    M. Esposito, Phys. Rev. E 85, 041125 (2012) CrossRefADSGoogle Scholar
  3. 3.
    A. Celani, S. Bo, R. Eichhorn, E. Aurell, Phys. Rev. Lett. 109, 260603 (2012) CrossRefADSGoogle Scholar
  4. 4.
    T. Hatano, Phys. Rev. E 60, R5017 (1999) CrossRefADSGoogle Scholar
  5. 5.
    T. Hatano, S.I. Sasa, Phys. Rev. Lett. 86, 3463 (2001) CrossRefADSGoogle Scholar
  6. 6.
    M. Esposito, C. Va den Broeck, Phys. Rev. Lett. 104, 090601 (2010)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Y. Oono, M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    S. Rahav, C. Jarzynski, J. Stat. Mech. 2007, P09012 (2007) CrossRefGoogle Scholar
  9. 9.
    A. Gomez-Marin, J. Parrondo, C. Va den Broeck, Phys. Rev. E 78, 011107 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M. Santillán, H. Qian, Phys. Rev. E 83, 041130 (2011) CrossRefADSGoogle Scholar
  11. 11.
    A. Puglisi, S. Pigolotti, L. Rondoni, A. Vulpiani, J. Stat. Mech. 2010, P05015 (2010) CrossRefGoogle Scholar
  12. 12.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) CrossRefADSGoogle Scholar
  13. 13.
    S. Bo, A. Celani, J. Stat. Phys. 154, 1325 (2014) MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    S. Zeraati, F.H. Jafarpour, H. Hinrichsen, J. Stat. Mech. 2012, L12001 (2012) MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. ben-Avraham, S. Dorosz, M. Pleimling, Phys. Rev. E 83, 041129 (2011) CrossRefADSGoogle Scholar
  16. 16.
    S. Ross, Stochastic Processes, 2nd edn. (John Wiley & Sons, New York, 1996)Google Scholar
  17. 17.
    S. Redner, A Guide to First-passage Processes (Cambridge University Press, 2001)Google Scholar
  18. 18.
    A.V. Getling, Rayleigh-Bénard Convection (World Scientific, 1998)Google Scholar
  19. 19.
    H.J. Kim, J.M. Kim, Phys. Rev. E 72, 036109 (2005) CrossRefADSGoogle Scholar
  20. 20.
    Y.M. Choi, H.J. Kim, Physica A 382, 665 (2007) CrossRefADSGoogle Scholar
  21. 21.
    H.J. Kim, Y.M. Choi, J. Phys. Soc. Jpn 76, 4801 (2007) Google Scholar
  22. 22.
    P.G. Lind, M.C. González, H.J. Herrmann, Phys. Rev. E 72, 056127 (2005) CrossRefADSGoogle Scholar
  23. 23.
    I. Vragović, E. Louis, Phys. Rev. E 74, 016105 (2006) CrossRefADSGoogle Scholar
  24. 24.
    L.D.F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007) CrossRefADSGoogle Scholar
  25. 25.
    M. Newman, Networks: an introduction (Oxford University Press, 2010)Google Scholar
  26. 26.
    S. Dorosz, M. Pleimling, Phys. Rev. E 80, 061114 (2009) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsKorea UniversitySeoulRepublic of Korea

Personalised recommendations