Statistical analysis of Nomao customer votes for spots of France

  • Róbert Pálovics
  • Bálint Daróczy
  • András Benczúr
  • Julia Pap
  • Leonardo Ermann
  • Samuel Phan
  • Alexei D. Chepelianskii
  • Dima L. Shepelyansky
Regular Article
  • 52 Downloads

Abstract

We investigate the statistical properties of votes of customers for spots of France collected by the startup company Nomao. The frequencies of votes per spot and per customer are characterized by a power law distribution which remains stable on a time scale of a decade when the number of votes is varied by almost two orders of magnitude. Using the computer science methods we explore the spectrum and the eigenvalues of a matrix containing user ratings to geolocalized items. Eigenvalues nicely map to large towns and regions but show certain level of instability as we modify the interpretation of the underlying matrix. We evaluate imputation strategies that provide improved prediction performance by reaching geographically smooth eigenvectors. We point on possible links between distribution of votes and the phenomenon of self-organized criticality.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Nomao company, http://fr.nomao.com/. Web. (2015)
  2. 2.
    S. Dorogovtsev, Lectures on Complex Networks (Oxford University Press, Oxford, 2010)Google Scholar
  3. 3.
    Wikipedia contributors, Recommender system, Wikipedia (2015)Google Scholar
  4. 4.
    Wikipedia contributors, Netflix Prize (2015) Google Scholar
  5. 5.
    J. Canny, Collaborative filtering with privacy via factor analysis, in SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (ACM Press, New York, 2002), p. 238Google Scholar
  6. 6.
    K.R. Gabriel, S. Zamir, Technometrics 21, 489 (1979)CrossRefMATHGoogle Scholar
  7. 7.
    N. Srebro, T. Jaakkola, in Weighted low-rank approximations, edited by T. Fawcett, N. Mishra (ICML, AAAI Press, 2003), p. 720Google Scholar
  8. 8.
    S. Zhang, W. Wang, J. Ford, F. Makedon, J. Pearlman, Using singular value decomposition approximation for collaborative filtering, in CEC ’05: Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05) (IEEE Computer Society, Washington, 2005), p. 257Google Scholar
  9. 9.
    S. Funk, Netflix update: Try this at home, http://sifter.org/˜simon/journal/20061211.html (2006)
  10. 10.
    J.H. Friedman, Ann. Stat. 29, 1189 (2001) CrossRefMATHGoogle Scholar
  11. 11.
    B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of dimensionality reduction in recommender systems – a case study, ACM WebKDD Workshop (2000)Google Scholar
  12. 12.
    M.H. Pryor, The effects of singular value decomposition on collaborative filtering, Technical report, Dartmouth College, Hanover, 1998Google Scholar
  13. 13.
    D. Billsus, M.J. Pazzani, Learning collaborative information filters, in ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning (Morgan Kaufmann Publishers Inc., San Francisco, 1998), pp. 46−54Google Scholar
  14. 14.
    D. Gupta, M. Digiovanni, H. Narita, K. Goldberg, Jester 2.0 (poster abstract): evaluation of an new linear time collaborative filtering algorithm, in SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (ACM Press, New York, 1999), p. 291Google Scholar
  15. 15.
    G.H. Golub, C.F.V. Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1983) Google Scholar
  16. 16.
    M. Kurucz, A.A. Benczúr, K. Csalogány, L. Lukács, Spectral clustering in telephone call graphs, WebKDD/SNAKDD Workshop 2007 in conjunction with KDD 2007 (2007)Google Scholar
  17. 17.
    R.M. Bell, Y. Koren, ACM SIGKDD Explorations Newsletter 9, 75 (2007)CrossRefGoogle Scholar
  18. 18.
    G. Takács, I. Pilászy, B. Németh, D. Tikk, Investigation of various matrix factorization methods for large recommender systems, in Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition (ACM, 2008), p. 1Google Scholar
  19. 19.
    G. Takács, I. Pilászy, B. Németh, D. Tikk, A unified approach of factor models and neighbor based methods for large recommender systems, in Applications of Digital Information and Web Technologies, 2008, ICADIWT 2008, First International Conference (IEEE, 2008), p. 186 Google Scholar
  20. 20.
    Y. Koren, R. Bell, C. Volinsky, Computer 42, 30 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Bao, Y. Zheng, D. Wilkie, M.F. Mokbel, ACM Transaction on Intelligent Systems and Technology (to be published) (2013) Google Scholar
  22. 22.
    P. Symeonidis, D. Ntempos, Y. Manolopoulos, in Location-based social networks (Springer, Berlin, 2014), p. 35 Google Scholar
  23. 23.
    J.J. Levandoski, M. Sarwat, A. Eldawy, M.F. Mokbel, Lars: A location-aware recommender system, in 28th International Conference on Data Engineering (ICDE) (IEEE, 2012), p. 450Google Scholar
  24. 24.
    T. Kurashima, T. Iwata, G. Irie, K. Fujimura, Travel route recommendation using geotags in photo sharing sites, in Proceedings of the 19th ACM international conference on Information and knowledge management (ACM, 2010), p. 579Google Scholar
  25. 25.
    M. Ye, P. Yin, W.-C. Lee, Location recommendation for location-based social networks, Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM, 2010), p. 458Google Scholar
  26. 26.
    M. Ye, P. Yin, W.-C. Lee, D.-L. Lee, Exploiting geographical influence for collaborative point-of-interest recommendation, in Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (ACM, 2011), p. 325Google Scholar
  27. 27.
    C. Cheng, H. Yang, I. King, M.R. Lyu, in Proccedings of 26th AAAI Conference on Artificial Intelligence (2012), pp. 17–23Google Scholar
  28. 28.
    J. Bennett, S. Lanning, The Netflix prize, KDD Cup and Workshop in conjunction with KDD 2007 (2007)Google Scholar
  29. 29.
    P. Cremonesi, Y. Koren, R. Turrin, Performance of recommender algorithms on top-n recommendation tasks, in Proceedings of the fourth ACM conference on Recommender systems (ACM, 2010), p. 39 Google Scholar
  30. 30.
    M. Deshpande, G. Karypis, ACM Trans. Inf. Syst. (TOIS) 22, 143 (2004)CrossRefGoogle Scholar
  31. 31.
    Q. Yuan, L. Chen, S. Zhao, Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation, in Proceedings of the fifth ACM conference on Recommender systems (ACM, 2011), p. 245Google Scholar
  32. 32.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Wikipedia contributors, Abelian sandpile model (2015)Google Scholar
  34. 34.
    Wikipedia contributors, Self-organized criticality (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Róbert Pálovics
    • 1
    • 2
  • Bálint Daróczy
    • 1
    • 2
  • András Benczúr
    • 1
    • 3
  • Julia Pap
    • 1
  • Leonardo Ermann
    • 4
  • Samuel Phan
    • 5
  • Alexei D. Chepelianskii
    • 6
  • Dima L. Shepelyansky
    • 7
  1. 1.Informatics Laboratory, Institute for Computer Science and ControlHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary
  2. 2.Technical University BudapestBudapestHungary
  3. 3.Eötvös University BudapestBudapestHungary
  4. 4.Departamento de Física TeóricaGIyA, CNEABuenos AiresArgentina
  5. 5.Nomao.comToulouseFrance
  6. 6.LPS, Université Paris-Sud, CNRS, UMR 8502OrsayFrance
  7. 7.Laboratoire de Physique Théorique du CNRS, IRSAMCUniversité de Toulouse, UPSToulouseFrance

Personalised recommendations