Advertisement

Synchronizability of two-layer networks

  • Mingming Xu
  • Jin Zhou
  • Jun-an Lu
  • Xiaoqun Wu
Regular Article

Abstract

In this paper, we investigate the synchronizability of two-layer networks according to the master stability method. We define three particular couplings: positively correlated, randomly correlated and negatively correlated couplings. When the inter-layer coupling strength is fixed, negatively correlated coupling leads to the best synchronizability of a two-layer network, and synchronizability of networks with randomly and positively correlated couplings follow consecutively. For varying inter-layer coupling strength, the trend of network synchronizability with an unbounded synchronous region differs from that with a bounded one. If the synchronous region is unbounded, synchronizability of the two-layer network keeps enhancing, but it has a threshold. If the synchronous region is bounded, the synchronizability of the two-layer network keeps improving until the inter-layer coupling strength reaches a certain value, and then the synchronizability gets weakened with ever-increasing inter-layer coupling strength. To summarise, there exists an optimal value of the inter-layer coupling strength for maximising synchronizability of two-layer networks, regardless of the synchronous region types and coupling patterns. The findings provided in this paper shed new light on understanding synchronizability of multilayer networks, and may find potential applications in designing optimal inter-layer couplings for synchronization of two-layer networks.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    G. D’Agostino, A. Scala, Networks of Networks: the last Frontier of Complexity (Springer, Berlin, 2014)Google Scholar
  2. 2.
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328, 5980 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Gutiérrez, I. Sendiñna-Nadal, M. Zanin, D. Papo, S. Boccaletti, Sci. Rep. 2, 396 (2012)CrossRefADSGoogle Scholar
  4. 4.
    G. Bianconi, Phys. Rev. E 87, 6 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C.J. Pérez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 2 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Granell, S. Gomez, A. Arenas, Phys. Rev. Lett. 111, 12 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Sole-Ribalta, M. De Domenico, N.E. Kouvaris, A. Díaz-Guilera, S. Gómez, A. Arenas, Phys. Rev. E 88, 3 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Floría, Sci. Rep. 2, 620 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Gómez-Gardeñes, C. Gracia-Lázaro, L.M. Floría, Y. Moreno, Phys. Rev. E 86, 5 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Aguirre, R. Sevilla-Escoboza, R. Gutiérrez, D. Papo, J.M. Buldú, Phys. Rev. Lett. 112, 24 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Um, P. Minnhagen, B.J. Kim, Chaos 21, 2 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Lu, W. Yu, J. Lü, A. Xue, IEEE T. Neur. Net. Lear. 25, 11 (2014)Google Scholar
  13. 13.
    H. Zhang, X. Wang, X. Lin, IEEE/ACM T. Comput. Bi. 11, 5 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Luo, X. Wang, H. Liu, Sci. Rep. 4, 7522 (2014)CrossRefADSGoogle Scholar
  15. 15.
    C. Luo, X. Wang, H. Liu, Chaos 24, 3 (2014)Google Scholar
  16. 16.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Com. Net. 2, 3 (2013)Google Scholar
  17. 17.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    A.L. Barabási, R. Albert, Science 286, 5439 (1999)Google Scholar
  19. 19.
    X.F. Wang, X. Li, G. Chen, Complex Networks Theory and its Application (Tsinghua University Press, Beijing, 2006)Google Scholar
  20. 20.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 10 (1998)CrossRefGoogle Scholar
  21. 21.
    L. Tang, J.-A. Lu, J. Lü, X. Yu, Int. J. Bifurc. Chaos 22, 11 (2012)Google Scholar
  22. 22.
    L. Tang, J.-A. Lu, J. Lü, X. Wu, Int. J. Bifurc. Chaos 24, 1 (2014)Google Scholar
  23. 23.
    B. Mohar, Y. Alavi, G. Chartrand, O. Oellermann, Graph Theory, Combinatorics, and Applications 18, 7 (1991)Google Scholar
  24. 24.
    G. Chen, The Theory and Application of Matrix (Science Press, Beijing, 2007)Google Scholar
  25. 25.
    C.W. Wu, Phys. Lett. A 319, 5 (2003)CrossRefGoogle Scholar
  26. 26.
    Y.Y. Gao, J.-A. Lu, Complex Systems and Complexity Science 9, 3 (2012)Google Scholar
  27. 27.
    S.J. Wang, X.J. Xu, Z.X. Wu, Y.H. Wang, Phys. Rev. E. 74, 4 (2006)MathSciNetGoogle Scholar
  28. 28.
    A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 3 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Díaz-Guilera, J. Gómez-Gardeñes, Y. Moreno, M. Nekovee, Int. J. Bifurc. Chaos 19, 2 (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsWuhan UniversityWuhanP.R. China
  2. 2.Department of Electrical and Computer EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations