A biharmonic drive induces negative mobility at relatively high temperature

Regular Article

Abstract

An inertial Brownian motor under the influence of a biased biharmonic signal is investigated numerically. For a finite positive bias force, the maximized negative current occurs at a relatively large noise intensity (D = 0.01), while the magnitude of the anomalous velocity is also very large (greater than 1.5). This result means one can observe remarkably abnormal transport behaviors at relatively high temperature by means of a biharmonic drive.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P. Reimann, Phys. Rep. 361, 57 (2002)CrossRefADSMathSciNetMATHGoogle Scholar
  2. 2.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)CrossRefADSGoogle Scholar
  3. 3.
    R. Eichhorn, P. Reimann, P. Hänggi, Phys. Rev. Lett. 88, 190601 (2002)CrossRefADSGoogle Scholar
  4. 4.
    R. Eichhorn, P. Reimann, P. Hänggi, Phys. Rev. E 66, 066132 (2002)CrossRefADSGoogle Scholar
  5. 5.
    L. Machura, M. Kostur, P. Talkner, J. Łuczka, P. Hänggi, Phys. Rev. Lett. 98, 040601 (2007)CrossRefADSGoogle Scholar
  6. 6.
    D. Speer, R. Eichhorn, P. Reimann, Europhys. Lett. 79, 10005 (2007)CrossRefADSGoogle Scholar
  7. 7.
    D. Speer, R. Eichhorn, P. Reimann, Phys. Rev. E 76, 051110 (2007)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Kostur, L. Machura, P. Talkner, P. Hänggi, J. Łuczka, Phys. Rev. B 77, 104509 (2008)CrossRefADSGoogle Scholar
  9. 9.
    J. Nagel, D. Speer, T. Gaber, A. Sterck, R. Eichhorn, P. Reimann, K. Ilin, M. Siegel, D. Koelle, R. Kleiner, Phys. Rev. Lett. 100, 217001 (2008)CrossRefADSGoogle Scholar
  10. 10.
    M. Kostur, J. Łuczka, P. Hänggi, Phys. Rev. E 80, 051121 (2009)CrossRefADSGoogle Scholar
  11. 11.
    L.C. Du, D.C. Mei, J. Stat. Mech.: Theor. Exp. 2011, P11016 (2011)CrossRefGoogle Scholar
  12. 12.
    L.C. Du, D.C. Mei, Phys. Rev. E 85, 011148 (2012)CrossRefADSGoogle Scholar
  13. 13.
    L.C. Du, D.C. Mei, Eur. Phys. J. B 87, 33 (2014)CrossRefADSGoogle Scholar
  14. 14.
    L. Machura, J. Spiechowicz, M. Kostur, J. Łuczka, J. Phys.: Condens. Matter 24, 085702 (2012)ADSGoogle Scholar
  15. 15.
    L. Machura, J. Spiechowicz, M. Kostur, J. Łuczka, Chem. Phys. 375, 445 (2010)CrossRefADSGoogle Scholar
  16. 16.
    L. Machura, J. Łuczka, Phys. Rev. E 82, 031133 (2010)CrossRefADSGoogle Scholar
  17. 17.
    D. Cubero, V. Lebedev, F. Renzoni, Phys. Rev. E 82, 041116 (2012)CrossRefADSGoogle Scholar
  18. 18.
    P.J. Martínez, R. Chacón, Phys. Rev. E 87, 062114 (2013)CrossRefADSGoogle Scholar
  19. 19.
    W.C. Stewart, Appl. Phys. Lett. 12, 277 (1968)CrossRefADSGoogle Scholar
  20. 20.
    D.E. McCumber, J. Appl. Phys. 39, 3113 (1968)CrossRefADSGoogle Scholar
  21. 21.
    D. Wu, S. Zhu, Phys. Rev. E 73, 051107 (2006)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsYunnan UniversityKunmingP.R. China

Personalised recommendations