Temperature-induced phase transformation of Fe1-xNix alloys: molecular-dynamics approach

Regular Article

Abstract

Using molecular-dynamics simulation, we study the temperature induced bcc/fcc phase transformation of random Fe1−x Ni x alloys in the concentration range of x ≤ 40 at%. The Meyer-Entel potential describes faithfully the decrease of the transition temperature with increasing Ni concentration. The austenite transformation proceeds by homogeneous nucleation and results in a fine-grained poly-crystalline structure. The transformation follows the Nishiyama-Wassermann orientation relationship. The martensite phase nucleates at the grain boundaries (heterogeneous nucleation). Even for the largest crystallite studied (2.75 × 105 atoms) the back-transformation results in a single-crystalline grain containing only a small amount of defects. The morphological changes in the transformed material show no significant dependence on Ni content.

Keywords

Solid State and Materials 

References

  1. 1.
    W. Pepperhoff, M. Acet, Constitution and Magnetism of Iron and its Alloys (Springer, Berlin, 2001)Google Scholar
  2. 2.
    M. Acet, T. Schneider, E.F. Wassermann, J. Phys. IV France 05, C2-105 (1995)Google Scholar
  3. 3.
    Z.-Z. Yu, P.C. Clapp, Metall. Trans. A 20, 1617 (1989)CrossRefGoogle Scholar
  4. 4.
    M. Grujicic, P. Dang, Mat. Sci. Eng. A 201, 194 (1995)CrossRefGoogle Scholar
  5. 5.
    M. Grujicic, S.G. Lai, P. Gumbsch, Mat. Sci. Eng. A 231, 151 (1997)CrossRefGoogle Scholar
  6. 6.
    G.V. Kurdjumov, G. Sachs, Z. Phys. 64, 325 (1930)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Nishiyama, Sci. Rep. Tohoku Imp. Univ. 23, 637 (1934)Google Scholar
  8. 8.
    G. Wassermann, Arch. Eisenhüttenwes. 6, 347 (1933)Google Scholar
  9. 9.
    R. Meyer, P. Entel, Phys. Rev. B 57, 5140 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    R. Meyer, P. Entel, J. Phys. IV France 05, C2-123 (1995)CrossRefGoogle Scholar
  11. 11.
    R. Meyer, P. Entel, J. Phys. IV France 07, C5-29 (1997)Google Scholar
  12. 12.
    R. Meyer, K. Kadau, P. Entel, in Properties of Complex Inorganic Solids, edited by A. Gonis, A. Meike, P.E.A. Turchi (Plenum, New York, 1997), p. 95Google Scholar
  13. 13.
    K. Kadau, P. Entel, P.S. Lomdahl, Comput. Phys. Commun. 147, 126 (2002)MATHADSCrossRefGoogle Scholar
  14. 14.
    K. Kadau, P. Entel, Phase Trans. 75, 59 (2002)CrossRefGoogle Scholar
  15. 15.
    P. Entel, M. Kreth, R. Meyer, K. Kadau, in Modeling and Simulating Materials Nanoworld, Advances in Science and Technology, edited by P. Vincenzini, F. Zerbetto (Techna Group, Faenza, 2004), Vol. 44, p. 101Google Scholar
  16. 16.
    L.E. Kar’kina, I.N. Kar’kin, Y.N. Gornostyrev, Phys. Met. Metallogr. 101, 130 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Bonny, R.C. Pasianot, L. Malerba, Model. Simul. Mater. Sci. Eng. 17, 025010 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Acta Mater. 53, 4029 (2005)CrossRefGoogle Scholar
  19. 19.
    L. Malerba et al., J. Nucl. Mater. 406, 7 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    P. Entel, R. Meyer, K. Kadau, H.C. Herper, E. Hoffmann, Eur. Phys. J. B 5, 379 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    P. Entel, K. Kadau, R. Meyer, V. Crisan, H. Ebert, T.C. Germann, P.S. Lomdahl, B.L. Holian, Adv. Solid State Phys. 40, 345 (2000)CrossRefGoogle Scholar
  22. 22.
    P. Entel, R. Meyer, K. Kadau, Philos. Mag. B 80, 183 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)MATHADSCrossRefGoogle Scholar
  24. 24.
    D. Faken, H. Jonsson, Comput. Mater. Sci. 2, 279 (1994)CrossRefGoogle Scholar
  25. 25.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2005)Google Scholar
  26. 26.
    N. Saunders, A.P. Miodownik, A.T. Dinsdale, Calphad 12, 351 (1988)CrossRefGoogle Scholar
  27. 27.
    M.I. Baskes, Mater. Chem. Phys. 50, 152 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    E.A. Owen, E.L. Yates, A.H. Sully, Proc. Phys. Soc. 49, 315 (1937)ADSCrossRefGoogle Scholar
  29. 29.
    L. Zwell, D.E. Carnahan, G.R. Speich, Metall. Trans. 1, 1007 (1970)Google Scholar
  30. 30.
    E. Jartych, J.K. Zurawicz, D. Oleszak, M. Pekala, J. Magn. Magn. Mater. 208, 221 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    N.P. Lazarev, C. Abromeit, R. Schäublin, R. Gotthardt, J. Appl. Phys. 100, 63520 (2006)CrossRefGoogle Scholar
  32. 32.
    V.G. Sathe, S. Banik, A. Dubey, S.R. Barman, A.M. Awasthi, L. Olivi, Adv. Mater. Res. 52, 175 (2008)CrossRefGoogle Scholar
  33. 33.
    C. Engin, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 16, 035005 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    L. Sandoval, H.M. Urbassek, P. Entel, Phys. Rev. B 80, 214108 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    B. Wang, H.M. Urbassek, Phys. Rev. B 87, 104108 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    B. Wang, H.M. Urbassek, Acta Mater. 61, 5979 (2013)CrossRefGoogle Scholar
  37. 37.
    B. Wang, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 21, 085007 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    B. Wang, H.M. Urbassek, Comput. Mater. Sci. 81, 170 (2014)CrossRefGoogle Scholar
  39. 39.
    B. Wang, E. Sak-Saracino, N. Gunkelmann, H.M. Urbassek, Comput. Mater. Sci. 82, 399 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany

Personalised recommendations