Thermal property of bent graphene nanorribons

Regular Article
  • 120 Downloads

Abstract

Comparing the thermal conductance features and mechanism between carbon nanotubes and graphene nanoribbons reveal the key role of intrinsic in-plane and out-of-plane phonon modes coupling in effectively influencing the materials’ thermal conductivity. The finding allows us to successfully propose an analytic intrinsic phonon mode-coupling-tuning model to control thermal properties of bent graphene nanorribons (BGNRs) with bending angle varying. The derived thermal conductivity using this method is larger in zigzag-edged and smaller in armchair-edged BGNRs than that of the corresponding single wall carbon nanotubes, respectively. The decrease of both thermal conductivity and specific heat as bending angle of BGNRs increasing due to the growing coupling between the intrinsic in-plane and out-of-plane modes present enormous potential of the BGNRs in acting as excellent components in important thermal devices.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004) CrossRefADSGoogle Scholar
  2. 2.
    D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005) CrossRefADSGoogle Scholar
  3. 3.
    G. Casati, Chaos 15, 015120 (2005) CrossRefADSGoogle Scholar
  4. 4.
    M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002) CrossRefADSGoogle Scholar
  5. 5.
    B. Hu, L. Yang, Y. Zhang, Phys. Rev. Lett. 97, 124302 (2006) CrossRefADSGoogle Scholar
  6. 6.
    G. Casati, C. Mejia-Monasterio, T. Prosen, Phys. Rev. Lett. 98, 104302 (2007) CrossRefADSGoogle Scholar
  7. 7.
    D. Segal, Phys. Rev. Lett. 100, 105901 (2008) CrossRefADSGoogle Scholar
  8. 8.
    B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006) CrossRefADSGoogle Scholar
  9. 9.
    L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007) CrossRefADSGoogle Scholar
  10. 10.
    L. Wang, B. Li, Phys. Rev. Lett. 101, 267203 (2008) CrossRefADSGoogle Scholar
  11. 11.
    C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006) CrossRefADSGoogle Scholar
  12. 12.
    T. Ouyang, Y.P. Chen, Y.E. Xie, G.M. Stocks, J.X. Zhong, Appl. Phys. Lett. 99, 233101 (2011) CrossRefADSGoogle Scholar
  13. 13.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes (Imperial college press, 2003) Google Scholar
  14. 14.
    Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Phys. Rev. B 69, 205415 (2004) CrossRefADSGoogle Scholar
  15. 15.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001) CrossRefADSGoogle Scholar
  16. 16.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009) CrossRefADSGoogle Scholar
  17. 17.
    L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Nature 458, 877 (2009) CrossRefADSGoogle Scholar
  18. 18.
    L.A. Jauregui et al., ECS Trans. 28, 73 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Yu, R.K. Kalia, P. Vashishta, J. Chem. Phys. 103, 6697 (1995) CrossRefADSGoogle Scholar
  20. 20.
    J.H. Lan, J.S. Wang, C.K. Gan, S.K. Chin, Phys. Rev. B 79, 115401 (2009) CrossRefADSGoogle Scholar
  21. 21.
    N. Mingo, Phys. Rev. B 74, 125402 (2006) CrossRefADSGoogle Scholar
  22. 22.
    J.S. Wang, J. Wang, J.T. Lu, Eur. Phys. J. B 62, 381 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsYancheng Institute of TechnologyYanchengP.R. China

Personalised recommendations