Advertisement

Structural and electronic properties of MX3 (M = Ti, Zr and Hf; X = S, Se, Te) from first principles calculations

  • Mahmud Abdulsalam
  • Daniel P. Joubert
Regular Article

Abstract

The structural and electronic properties of layered TiS3, TiSe3, TiTe3, HfS3, HfSe3, HfTe3, ZrS3, ZrSe3 and ZrTe3 with structure P21/m have been investigated using density functional theory for the first time at the atomic level within the vdW-DF and vdW-TS approximations to account for long range dispersive forces, which is important in predicting layered material interlayer spacing accurately. To get reasonable estimates of the band gaps, MBJ band structure calculations were performed. With exception of the tellurides and TiSe3, which are found to be metallic, the compounds are indirect band gap semiconductors with band gap in the range of 0.44 to 2.04 eV. The minimum direct band gaps were found to be in a similar range. The elastic constants of these structures confirm their mechanical stability by satisfying all the stability criteria for monoclinic structures. Phonon band structure and thermal properties were calculated using density functional perturbation theory. The phonon dispersion relations show that the structures are stable under small atomic displacements.

Keywords

Computational Methods 

References

  1. 1.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    R. Tenne, A. Wold, Appl. Phys. Lett. 47, 707 (1985) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Feldman, E. Wasserman, D. Srolovitz, R. Tenne, Science 267, 222 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, D. Mihailovic, Science 292, 479 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic, Nanotechnol. IEEE Trans. 4, 153 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    J. Wilson, A. Yoffe, Adv. Phys. 18, 193 (1969) ADSCrossRefGoogle Scholar
  7. 7.
    H. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C. Rao, Angew. Chem. 122, 4153 (2010) CrossRefGoogle Scholar
  8. 8.
    R. Tenne, M. Redlich, Chem. Soc. Rev. 39, 1423 (2010) CrossRefGoogle Scholar
  9. 9.
    T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, Appl. Phys. Lett. 99, 102109 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B 84, 205325 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    J. Wilson, F. Di Salvo, S. Mahajan, Adv. Phys. 50, 1171 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    R. Friend, A. Yoffe, Adv. Phys. 36, 1 (1987) ADSCrossRefGoogle Scholar
  14. 14.
    K. Patel, J. Prajapati, R. Vaidya, S. Patel, Bull. Mater. Sci. 28, 405 (2005) CrossRefGoogle Scholar
  15. 15.
    M. Moustafa, T. Zandt, C. Janowitz, R. Manzke, Phys. Rev. B 80, 035206 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    P. Novák, R. Imhof, O. Haas, Electrochim. Acta 45, 351 (1999) CrossRefGoogle Scholar
  17. 17.
    D. Bullett, J. Phys. C 12, 277 (1979) ADSCrossRefGoogle Scholar
  18. 18.
    S. Furuseth, L. Brattas, A. Kjekshus, Acta Chem. Scand. 29, 623 (1975) CrossRefGoogle Scholar
  19. 19.
    F. Levy, H. Berger, J. Crystal Growth 61, 61 (1983) ADSCrossRefGoogle Scholar
  20. 20.
    H. Jin, D. Cheng, J. Li, X. Cao, B. Li, X. Wang, X. Liu, X. Zhao, Solid State Sci. 13, 1166 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    A. Steffensen, Acta Chem. Scand. 17 (1963) Google Scholar
  22. 22.
    G. Perluzzo, A. Lakhani, S. Jandl, Solid State Commun. 35, 301 (1980) ADSCrossRefGoogle Scholar
  23. 23.
    A. Ait-Ouali, S. Jandl, Phys. Rev. B 53, 9852 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    W. Schairer, M. Shafer, Phys. Stat. Sol. A 17, 181 (1973) ADSCrossRefGoogle Scholar
  25. 25.
    D. Pacilé, M. Papagno, M. Lavagnini, H. Berger, L. Degiorgi, M. Grioni, Phys. Rev. B 76, 155406 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    H. Myron, B. Harmon, F. Khumalo, J. Phys. Chem. Solids 42, 263 (1981) ADSCrossRefGoogle Scholar
  27. 27.
    C. Felser, E. Finckh, H. Kleinke, F. Rocker, W. Tremel, J. Mater. Chem. 8, 1787 (1998) CrossRefGoogle Scholar
  28. 28.
    A. Shkvarin, Y.M. Yarmoshenko, M. Yablonskikh, A. Merentsov, A. Titov, J. Struct. Chem. 55, 1039 (2014) CrossRefGoogle Scholar
  29. 29.
    F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    T. Bučko, S. Lebègue, J. Hafner, J. Ángyán, Phys. Rev. B 87, 064110 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  37. 37.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  38. 38.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999) ADSCrossRefGoogle Scholar
  41. 41.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  42. 42.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. A 46, 6671 (1992) ADSGoogle Scholar
  44. 44.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48, 4978 (1993) ADSCrossRefGoogle Scholar
  45. 45.
    A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008) ADSCrossRefGoogle Scholar
  46. 46.
  47. 47.
    M.S.H. Suleiman, Ph.D. thesis, University of the Witwatersrand (2013) Google Scholar
  48. 48.
    L. Brattas, A. Kjekshus, Acta Chem. Scand. 26, 3441 (1972) CrossRefGoogle Scholar
  49. 49.
    Y.H. Duan, Y. Sun, M.J. Peng, Z.Z. Guo, Solid State Sci. 13, 455 (2011) ADSCrossRefGoogle Scholar
  50. 50.
    J.P. Watt, J. Appl. Phys. 51, 1520 (1980) ADSCrossRefGoogle Scholar
  51. 51.
    Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007) ADSCrossRefGoogle Scholar
  52. 52.
    Y. chun Ding, M. Chen, W. Wu, Physica B 449, 236 (2014) ADSCrossRefGoogle Scholar
  53. 53.
    G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006) CrossRefGoogle Scholar
  54. 54.
    W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009) ADSGoogle Scholar
  55. 55.
    E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28, 899 (2007) CrossRefGoogle Scholar
  56. 56.
    H. Jiang, J. Chem. Phys. 134, 204705 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    K. Burke, J. Chem. Phys. 136, 150901 (2012) ADSCrossRefGoogle Scholar
  58. 58.
    J.D. Chai, P.T. Chen, Phys. Rev. Lett. 110, 033002 (2013) ADSCrossRefGoogle Scholar
  59. 59.
    G. Perluzzo, S. Jandl, P. Girard, Can. J. Phys. 58, 143 (1980) ADSCrossRefGoogle Scholar
  60. 60.
    G. Xiuying, G. Fengsheng, T. Yamaguchi, H. Kan, M. Kumagawa, Crystal Res. Technol. 27, 1087 (1992) CrossRefGoogle Scholar
  61. 61.
    I. Ferrer, J. Ares, J. Clamagirand, M. Barawi, C. Sánchez, Thin Solid Films 535, 398 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the WitwatersrandWitsSouth Africa

Personalised recommendations