Advertisement

Collective oscillations in spatially modulated exciton-polariton condensate arrays

  • Andrey A. Tikhomirov
  • Oleg I. Kanakov
  • Boris L. Altshuler
  • Mikhail V. Ivanchenko
Regular Article

Abstract

We study collective dynamics of interacting centers of exciton-polariton condensation in presence of spatial inhomogeneity, as modeled by diatomic active oscillator lattices. The mode formalism is developed and employed to derive existence and stability criteria of plane wave solutions. It is demonstrated that k 0 = 0 wave number mode with the binary elementary cell on a diatomic lattice possesses superior existence and stability properties. Decreasing net on-site losses (balance of dissipation and pumping) or conservative nonlinearity favors multistability of modes, while increasing frequency mismatch between adjacent oscillators detriments it. On the other hand, spatial inhomogeneity may recover stability of modes at high nonlinearities. Entering the region where all single-mode solutions are unstable we discover subsequent transitions between localized quasiperiodic, chaotic and global chaotic dynamics in the mode space, as nonlinearity increases. Importantly, the last transition evokes the loss of synchronization. These effects may determine lasing dynamics of interacting exciton-polariton condensation centers.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J. Kasprzak et al., Nature 443, 409 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    J. Keeling, N. Berloff, Contemp. Phys. 52, 131 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    C.W. Lai et al., Nature 450, 526 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    M. Wouters, Phys. Rev. B 77, 121302 (2008) ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    P.R. Eastham, Phys. Rev. B 78, 035319 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    I.L. Aleiner, B.L. Altshuler, Y.G. Rubo, Phys. Rev. B 85, 121301 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    M. Ivanchenko, G. Osipov, V. Shalfeev, J. Kurths, Physica D 189, 8 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Physica D 238, 1203 (2009) ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    V. Astakhov, S. Koblyanskii, A. Shabunin, T. Kapitaniak, Chaos 21, 023129 (2011) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Y.P. Emelianova, A.P. Kuznetsov, I.R. Sataev, L.V. Turukina, Physica D 244, 36 (2013)ADSCrossRefMATHGoogle Scholar
  13. 13.
    I.S. Aranson, A.V. Gaponov-Grekhov, M.I. Rabinovich, J. Exp. Theor. Phys. 62, 52 (1985)Google Scholar
  14. 14.
    J.F. Ravoux, S. Le Dizès, P. Le Gal, Phys. Rev. E 61, 390 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    A. Mohamadou, T. Kofane, Phys. Rev. E 73, 046607 (2006) ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Wamba, A. Mohamadou, T. Kofane, Phys. Rev. E 77, 046216 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrey A. Tikhomirov
    • 1
  • Oleg I. Kanakov
    • 1
  • Boris L. Altshuler
    • 2
  • Mikhail V. Ivanchenko
    • 3
  1. 1.Theory of Oscillations Department, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Department of PhysicsColumbia UniversityNew YorkUSA
  3. 3.Department of BioinformaticsLobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations