Advertisement

Theoretical study of carbon double cones

  • Mirleide D. Lopes
  • Sérgio Azevedo
  • Fernando Moraes
  • Marcelo Machado
Regular Article

Abstract

We have applied first-principles calculations, based on the density functional theory, to investigate the electronic structure of pure and nitrogen (N) and (B) doped carbon (C) cones and double cones in a hourglass shape. The relative number of s p 3 bonds, together with apex rearrangement and growth environment, determine the energetic stability of these structures. The electronic structure calculations revealed that the s p 2/s p 3 ratio defines the gap size for the non doped double cones. For the doped systems it was observed a gap reduction for one specific configuration and that this reduction is associated with the defects interaction. Densities of states (DOS) changes in response to the application of external electric fields were observed, with some double cones becoming metallic. Permanent electric dipole moments, equal to –1.2 eÅ and –2.3 eÅ, were calculated for the B and N doped double cones. The interaction of this electric dipole with the electric field application can be used to tune the electronic properties of these systems.

Keywords

Solid State and Materials 

References

  1. 1.
    S. Ijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    A. Rubio, J. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)CrossRefGoogle Scholar
  5. 5.
    C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath. ChemPhysChem 2, 78 (2001)CrossRefGoogle Scholar
  6. 6.
    V.N. Popov, Mat. Sci. Eng. Rep. 43, 61 (2004)CrossRefGoogle Scholar
  7. 7.
    K. Balasubramanian, M. Burghard, Small 1, 180 (2005)CrossRefGoogle Scholar
  8. 8.
    H.W. Kroto, Nature 329, 529 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S. Azevedo, M.S.C. Mazzoni, H. Chacham, R.W. Nunes, Appl. Phys. Lett. 82, 2323 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    S. Ijima, T. Ichibashi, Y. Ando, Nature 356, 776 (1992) ADSCrossRefGoogle Scholar
  12. 12.
    M. Ge, K. Sattler, Appl. Phys. Lett. 64, 710 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    S. Azevedo, Phys. Lett. A 337, 431 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    A. Cortijo, M.A.Z. Vozmediano, Nucl. Phys. B 763, 293 (2007) ADSCrossRefMATHGoogle Scholar
  16. 16.
    C. Furtado, F. Moraes, A.M. de M. Carvalho, Phys. Lett. A 372, 5368 (2008) ADSCrossRefMATHGoogle Scholar
  17. 17.
    S.P. Jordan, V.H. Crespi, Phys. Rev. Lett. 93, 255504 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    D. Pedreira, S. Azevedo, M. Machado, Phys. Rev. B 78, 085427 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)CrossRefGoogle Scholar
  21. 21.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, I.B. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    G. Román Pérez, J.M. Soler, Phys. Rev. Lett. 103, 096102 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    S. Azevedo, J.R. Kaschny, Eur. Phys. J. B 86, 395 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Guedes, S. Azevedo, M. Machado, Eur. Phys. J. B 80, 135 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Azevedo, Phys. Lett. A 325, 283 (2004) ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    G. Zhang, W. Dan, B. Gu, Appl. Phys. Lett. 80, 2589 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    K. Kowalski, J. Rembielinski, Ann. Phys. 329, 146 (2012) ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mirleide D. Lopes
    • 1
  • Sérgio Azevedo
    • 1
  • Fernando Moraes
    • 1
  • Marcelo Machado
    • 2
  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations