Network of participants in European research: accepted versus rejected proposals

Regular Article

Abstract

We investigate the network formed by the collaboration of researchers seeking funding by the European Commission by submitting research proposals. Institutions are network nodes and collaborations are links between the nodes. We constructed one network for the accepted proposals and one for the rejected ones, in order to look for any structural differences between them. To this end, first, we compare the size of the largest connected components and the resulting degree distributions. The latter show notable difference only in the region of relatively small degrees. We calculate the assortative mixing by participant type, i.e. a property which indicates whether the participant is a university/research institute, a company (non-profit included), or undefined. By aggregating the data of both networks into three geographical scales (city, region, country), we compare the degree assortativity and average node weight, in all scales. With respect to these two features the networks display similar behaviour. Finally, we compare a series of centrality measures and the Minimum Spanning Trees, at the country scale, to assess the relative performance of the countries. We find that five countries, France, Germany, the United Kingdom, Spain and Italy, play a central role in both networks, however, their relative significance is not the same.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. van Dyck, EMBO Rep. 3, 1110 (2002)CrossRefGoogle Scholar
  2. 2.
    H. Wigzell, Science 295, 443 (2002) CrossRefGoogle Scholar
  3. 3.
    Y. Caloghirou, A. Tsakanikas, N. Vonortas, J. Technol. Transf. 26, 153 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Constantelou, A. Tsakanikas, Y. Caloghirou, Int. J. Technology Management 27, 773 (2004)CrossRefGoogle Scholar
  5. 5.
    J.A. Almendral, J.G. Oliveira, L. Lopez, M.A.F. Sanjuan, J.F.F. Mendes, New J. Phys. 9, 183 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Garas, P. Argyrakis, Europhys. Lett. 84, 68005 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    T. Scherngell, M.J. Barber, Ann. Regional Sci. 46, 247 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    J. Alstott, E.T. Bullmore, D. Plenz, PLoS ONE 9, e85777 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    M. Newman, Phys. Rev. E 67, 026126 (2003) ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Efron, SIAM Rev. 21, 460 (1979)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    M. Newman, Phys. Rev. Lett. 89, 208701 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    M. Newman, Networks: An Introduction (Oxford University Press, Inc., New York, 2010)Google Scholar
  14. 14.
    D. Koschutzki, K. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski, in Network analysis: Methodological Foundations, Lecture Notes in Computer Science, edited by U. Brandes, T. Erlebach (Springer-Verlag, Berlin, 2005), Vol. 3418, pp. 16–61Google Scholar
  15. 15.
    P. Bonacich, J. Math. Sociol. 2, 113 (1972)CrossRefGoogle Scholar
  16. 16.
    P. Bonacich, Am. J. Sociol. 92, 1170 (1987) CrossRefGoogle Scholar
  17. 17.
    G. Sabidussi, Physiometrika 31, 581 (1966)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    L.C. Freeman, Sociometry 40, 35 (1977)CrossRefGoogle Scholar
  19. 19.
    J.M. Anthonisse, The rush in a directed graph. Technical report, Stichting Mathemastisch Centrum. Mathematische Besliskunde, BN 9/71, Amsterdam (1971), http://oai.cwi.nl/oai/asset/9791/9791A.pdf
  20. 20.
    U. Brandes, J. Math. Soc. 25, 163 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    U. Brandes, Soc. Networks 30, 136 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 3rd edn. (MIT Press, Cambridge, 2009), http://mitpress.mit.edu/books/introduction-algorithms

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations