Advertisement

Density matrix approach to the orbital ordering in the spinel vanadates: a case study

Regular Article

Abstract

In this work we apply the density matrices approach to orbital ordering (OO) in order to study the OO of the spinel vanadates AV2O4 (A ≡ Zn, Cd and Mg), which is normally believed to be responsible for the structural transition from cubic to tetragonal phase observed in these compounds. The density matrices of vanadium atoms are obtained by using state-of-the-art full-potential linearized augmented plane wave method based GGA + U calculations. In the absence of spin-orbit coupling, the present study shows the existence of anti-ferro OO in the global (local octahedral) coordinate system where d xz and d yz (d xz + d yz and d xz d yz ) orbitals are mainly occupied at the neighboring V sites for all the compounds.

Keywords

Solid State and Materials 

References

  1. 1.
    D.I. Khomskii, Phys. Scr. 72, CC8 (2005), and references thereinGoogle Scholar
  2. 2.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Tokura, N. Nagaosa, Science 288, 462 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    T. Hotta, E. Dagotto, in Colossal Magnetoresistive Manganites, edited by T.K. Chatterji (Kluwer Amsterdam, 2004), p. 207Google Scholar
  6. 6.
    J.B. Goodenough, Phys. Rev. 100, 564 (1955) ADSCrossRefGoogle Scholar
  7. 7.
    D.I. Khomskii, Basic Aspects of the Quantum Theory of Solids, Order and Elementary Excitations (Cambridge University Press, New York, 2010)Google Scholar
  8. 8.
    E. Pavarini, E. Koch, A.I. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    E. Pavarini, E. Koch, Phys. Rev. Lett. 104, 086402 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Huang, L. Pi, S. Tan, Z. Yang, Y. Zhang, J. Phys: Condens. Matter 24, 056001 (2012) ADSGoogle Scholar
  11. 11.
    P.G. Radaelli, New J. Phys. 7, 53 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    O. Tchernyshyov, Phys. Rev. Lett. 93, 157206 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    D.I. Khomskii, T. Mizokawa, Phys. Rev. Lett. 94, 156402 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    H. Tsunetsugu, Y. Motome, Phys. Rev. B 68, 060405(R) (2003) ADSCrossRefGoogle Scholar
  15. 15.
    K.I. Kugel, D.I. Khomskii, Sov. Phys. J. Exp. Theor. Phys. 37, 725 (1973)ADSGoogle Scholar
  16. 16.
    K.I. Kugel, D.I. Khomskii, Sov. Phys. Solid State 17, 285 (1975)Google Scholar
  17. 17.
    K.I. Kugel, D.I. Khomskii, Sov. Phys. Usp. 25, 231 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    K.I. Kugel, D.I. Khomskii, Zh. Eksp. Teor. Fiz. 64, 1429 (1973) and reference thereinGoogle Scholar
  19. 19.
    H. Tsunetsugu, Y. Motome, Phys. Rev. B 70, 184427 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    S.-H. Lee, D. Louca, H. Ueda, S. Park, T.J. Sato, M. Isobe, Y. Ueda, S. Rosenkranz, P. Zschack, J.Í ñiguez, Y. Qiu, R. Osborn, Phys. Rev. Lett. 93, 156407 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    S. Di Matteo, G. Jackeli, N.B. Perkins, Phys. Rev. B 72, 020408(R) (2005) CrossRefGoogle Scholar
  22. 22.
    T. Maitra, R. Valentí, Phys. Rev. Lett. 99, 126401 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    S.K. Pandey, Phys. Rev. B 84, 094407 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    S.K. Pandey, Phys. Rev. B 86, 085103 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    E.M. Wheeler, B. Lake, A.T.M.N. Islam, M. Reehuis, P. Steffens, T. Guidi, A.H. Hill, Phys. Rev. B 82, 140406(R) (2010) ADSCrossRefGoogle Scholar
  26. 26.
    M. Onoda, J. Hasegawa, J. Phys: Condens. Matter 15, L95 (2003)ADSGoogle Scholar
  27. 27.
    M. Reehuis, A. Krimmel, N. Büttgen, A. Loidl, A. Prokofiev, Eur. Phys. J. B 35, 311 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    H. Mamiya, M. Onoda, T. Furubayashi, J. Tang, I. Nakatani, J. Appl. Phys. 81, 5289 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    N. Nishiguchi, M. Onoda, J. Phys: Condens. Matter 14, L551 (2002) ADSGoogle Scholar
  30. 30.
    D.B. Rogers, R.J. Arnott, A. Wold, J.B. Goodenough, J. Phys. Chem. Solids 24, 347 (1963)ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    F. Bultmark, F. Cricchio, O. Grånäs, L. Nordström, Phys. Rev. B 80, 035121 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    Elk Code Wiki, Notes by A. Kozhevnikov, Occupancy Matrix in LAPW, http://elk.sourceforge.net
  35. 35.
    A.B. Shick, A.I. Liechtenstein, W.E. Pickett, Phys. Rev. B 60, 10763 (1999) ADSCrossRefGoogle Scholar
  36. 36.
    W. Demtröder, An Introduction to Atomic-, Molecular- and Quantum Physics (Springer-Verlag, New York, 2010)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of EngineeringIndian Institute of Technology MandiKamandIndia

Personalised recommendations