Skip to main content
Log in

Four-terminal impedance of a graphene nanoribbon based structure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The four-terminal impedance is studied in a typical graphene nanoribbon based structure. When two additional voltage probes are attached, the results show that at the Dirac point, both the real and imaginary parts of the impedance are negative. As the Fermi energy deviates from the Dirac point, the real part of impedance oscillates with its sign changing frequently, while the imaginary part becomes vanishingly small. The phase incoherent processes introduced by the voltage probes contribute to inelastic scattering and charge redistribution in the central device region. As a result, the measured conductance is substantially different from the two-terminal measurement of a perfect graphene nanoribbon, indicating the important role of voltage probes in realistic four-terminal measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  3. Y . Lin, A. Garcia, S. Han, D. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, K. Jenkins, Science 332, 1294 (2011)

    Article  ADS  Google Scholar 

  4. S. Han, A. Garcia, S. Oida, K. Jenkins, W. Haenschm, Nat. Commun. 5, 3086 (2014)

    ADS  Google Scholar 

  5. A. Rycerz, J. Strokeo, C. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  6. D. Gunlycke, C. White, Phys. Rev. Lett. 106, 136806 (2011)

    Article  ADS  Google Scholar 

  7. M. Lee, N. Lue, C. Wen, G. Wu, Phys. Rev. B 86, 165411 (2012)

    Article  ADS  Google Scholar 

  8. A. Krasheninnikov, P. Lehtinen, A. Foster, P. Pyykkö, R. Nieminen, Phys. Rev. Lett. 102, 126807 (2009)

    Article  ADS  Google Scholar 

  9. J. Hu, R. Wu, Nano Lett. 14, 1853 (2014)

    Article  ADS  Google Scholar 

  10. M. Wimmer, I. Adagideli, S. Berber, D. Tománek, K. Richter, Phys. Rev. Lett. 100, 177207 (2008)

    Article  ADS  Google Scholar 

  11. T. Yokoyama, Phys. Rev. Lett. 77, 073413 (2008)

    Google Scholar 

  12. Z. Niu, D. Xing, Eur. Phys. J. B 78, 83 (2010)

    Article  ADS  Google Scholar 

  13. A. Swartz, P. Odenthal, Y. Hao, R. Ruoff, R. Kawakami, ACS Nano 6, 10063 (2012)

    Article  Google Scholar 

  14. B. Zhou, W. Liao, B. Zhou, K. Chen, G. Zhou, Eur. Phys. J. B 76, 421 (2010)

    Article  ADS  Google Scholar 

  15. Y. Yan, H. Zhao, Eur. Phys. J. B 86, 137 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Zeng, J. Zhao, D. Xu, J. Wei, H. Zhang, Eur. Phys. J. B 86, 80 (2013)

    Article  ADS  Google Scholar 

  17. E. Ye, J. Lan, W. Sui, C. Sun, X. Zhao, Phys. Lett. A 376, 2555 (2012)

    Article  ADS  Google Scholar 

  18. J. Lan, E. Ye, W. Sui, X. Zhao, Phys. Chem. Chem. Phys. 15, 671 (2013)

    Article  Google Scholar 

  19. R. Picciotto, H. Stormer, L. Pfeiffer, K. Baldwin, K. West, Nature 411, 51 (2001)

    Article  ADS  Google Scholar 

  20. F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  21. S. Russo, M. Craciun, M. Yamamoto, A. Morpurgo, S. Tarucha, Physica E 42, 677 (2010)

    Article  ADS  Google Scholar 

  22. T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, K. Noguchi, Appl. Phys. Lett. 98, 012508 (2011)

    Article  ADS  Google Scholar 

  23. A. Prêtre, H. Thomas, M. Büttiker, Phys. Rev. B 54, 8130 (1996)

    Article  ADS  Google Scholar 

  24. M. Büttiker, T. Christen, in Mesoscopic Electron Transport (Springer, Netherlands, 1997), pp. 259–289

  25. M. Büttiker, IBM. J. Res. Dev. 32, 317 (1988)

    Article  Google Scholar 

  26. T. Gramespacher, M. Büttiker, Phys. Rev. B 56, 13026 (1997)

    Article  ADS  Google Scholar 

  27. K. Wakabayashi, K. Sasaki, T. Nakanishi, T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010)

    Article  Google Scholar 

  28. L. Brey, H. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuean Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, YJ., Lan, J., Ye, EJ. et al. Four-terminal impedance of a graphene nanoribbon based structure. Eur. Phys. J. B 87, 251 (2014). https://doi.org/10.1140/epjb/e2014-50321-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50321-0

Keywords

Navigation