Advertisement

The entanglement entropy for quantum system in one spatial dimension

  • Honglei Wang
  • Yao Heng Su
  • Bo Liang
  • Longcong Chen
Regular Article

Abstract

Ground-state entanglement entropies were investigated for the one-dimension quantum two- and three-spin interaction models, the four-state Potts model, and the XXZ model with uniaxial single-ion-type anisotropy, which were obtained on an infinite-size lattice in one spatial dimension. Thus we show that the entanglement, a key concept of quantum information science, is quantified by the ground-state entanglement entropy. The relationships between ground-state entanglement entropy and quantum phase transition was analyzed. These results were obtained using the infinite matrix product state algorithm which works in the thermodynamical limit.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    I. Peschel, J. Stat. Mech. 2004, P12005 (2004)CrossRefGoogle Scholar
  4. 4.
    F. Verstraete, M.A. Martin-Delgado, J.I. Cirac, Phys. Rev. Lett. 92, 087201 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    W. Dur, L. Hartmann, M. Hein, M. Lewenstein, H.J. Briegel, Phys. Rev. Lett. 94, 097203 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    W.-L. You, A.M. Oles, P. Horsch, Phys. Rev. B 86, 094412 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Oles, J. Phys.: Condens. Matter 24, 313201 (2012)ADSGoogle Scholar
  10. 10.
    M. Rodney, H. Francis Song, S.-S. Lee, K.L. Hur, E. Sorensen, Phys. Rev. B 87, 115132 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S.I. Sondhi, S.M. Girvin, J.P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    D.B. Haviland, Y. Liu, A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    H.S.J. van der Zant, F.C. Fritschy, W.E. Elion, L.J. Geerligs, J.E. Mooij, Phys. Rev. Lett. 69, 2971 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, edited by D. Bouwmeester, A. Ekert, A. Zeilinger (Springer, Berlin, 2000)Google Scholar
  15. 15.
    Quantum [un]speakables, from Bell to Quantum Information, edited by R.A. Bertlmann, A. Zeilinger (Springer, Berlin, 2002)Google Scholar
  16. 16.
    C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    T. Osborne, M. Nielsen, Phys. Rev. A 66, 032110 (2002)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    P. Calabrese, J. Cardy, J. Stat. Mech. 2004, P06002 (2004)Google Scholar
  23. 23.
    P. Calabrese, J. Cardy, J. Stat. Mech. 2005, P04010 (2005)CrossRefMathSciNetGoogle Scholar
  24. 24.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 44 (1994)CrossRefMathSciNetGoogle Scholar
  26. 26.
    G. Refael, J.E. Moore, Phys. Rev. Lett. 93, 260602 (2004)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    L. Tagliacozzo, T.R. de Oliveira, S. Iblisdir, J.I. Latorre, Phys. Rev. B 78, 024410 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    G. Vidal, arXiv:0912.1651 (2010)Google Scholar
  29. 29.
    P. Calabrese, J. Cardy, J. Phys. A 42, 504005 (2009)CrossRefMathSciNetGoogle Scholar
  30. 30.
    H. Matsueda, arXiv:1112.5566 (2011)Google Scholar
  31. 31.
    M.B. Plenio, J. Eisert, J. Dreibig, M. Cramer, Phys. Rev. Lett. 94, 060503 (2005)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    A. Riera, J.I. Latorre, Phys. Rev. A 74, 052326 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    P. Calabrese, J. Cardy, Int. J. Quantum Inf. 4, 429 (2006)CrossRefMATHGoogle Scholar
  34. 34.
    F. Ploomann, S. Mukerjee, A.M. Turner, J.E. Moore, Phys. Rev. Lett. 102, 255701 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59, 10493 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    A. Bermudez, D. Porras, M.A. Martin-Delgado, Rap. Comm. Phys. Rev. A 79, 060303(R) (2009)ADSCrossRefGoogle Scholar
  37. 37.
    H.J. Herrmann, Z. Phys. B 43, 55 (1981)ADSCrossRefGoogle Scholar
  38. 38.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    R.J. Creswick, S.-Y. Kim, arXiv:cond-mat/9701018 (1997)Google Scholar
  40. 40.
    F.D.M. Haldane, Phys. Rev. Lett. 50, 1553 (1983)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    W. Chen, K. Hida, B.C. Sanctuary, Phys. Rev. B 67, 104401 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    S. Hu, B. Normand, X. Wang, L. Yu, Phys. Rev. B 84, 220402 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Honglei Wang
    • 1
  • Yao Heng Su
    • 2
  • Bo Liang
    • 1
  • Longcong Chen
    • 1
  1. 1.Laboratory of Forensic Medicine and Biomedical Information, Chongqing Medical UniversityChongqingP.R. China
  2. 2.School of Science, Xian Polytechnic UniversityXi’anP.R. China

Personalised recommendations