Advertisement

Noises- and delay-enhanced stability in a bistable dynamical system describing chemical reaction

  • Tao Yang
  • Chun Zhang
  • Qinglin Han
  • Chun-Hua Zeng
  • Hua Wang
  • Dong Tian
  • Fei Long
Regular Article

Abstract

In this paper, we consider the Schlögl model with time-delayed feedback to study the switching behavior of a bistable chemical reaction system in the presence of cross-correlated multiplicative and additive noise sources. Our results show that (i) the multiplicative noise (or additive noise) can induce the switch from high (or low) concentration state to low (or high) concentration one; (ii) the mean first passage time (MFPT) of switch from high concentration state to the low concentration one as functions of the noise strengths exhibits a maximum, which is the signature of the noise enhanced stability (NES) phenomenon for the high concentration state; and (iii) as the value of cross-correlation strength λ, time delay τ, or strength K of the feedback loop increases, the maximum in the MFPT increases, i.e., λ, τ, or K can enhance stability of the high concentration state.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    H. Qian, L.M. Bishop, Int. J. Mol. Sci. 11, 3472 (2010)CrossRefGoogle Scholar
  2. 2.
    N.E. Kouvaris, H. Kori, A.S. Mikhailov, PLoS ONE 9, e45029 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kochanczyk, J. Jaruszewicz, T. Lipniacki, J. Roy. Soc. Interface 10, 20130151 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Schlögl, Z. Phys. 253, 147 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    M. Vellela, H. Qian, J. Roy. Soc. Interface 6, 925 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Liang, H. Qian, J. Comput. Sci. Technol. 25, 1 (2010)Google Scholar
  7. 7.
    S. Zhong, H.W. Xin, Chem. Phys. Lett. 333, 133 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Zeng, H. Wang, Chem. Phys. 402, 1 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Pineda, L. Schimansky-Geier, R. Imbihl, Phys. Rev. E 75, 061107 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M. Pineda, R. Toral, J. Phys. Chem. 130, 124704 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Cisternas, R. Lecaros, S. Wehner, Eur. Phys. J. D 62, 91 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K.R. Kim, D.J. Lee, C.J. Kim, K.J. Shin, Bull. Korean Chem. Soc. 15, 627 (1994)Google Scholar
  13. 13.
    K.R. Kim, D.J. Lee, K.J. Shin, Bull. Korean Chem. Soc. 16, 1113 (1995)Google Scholar
  14. 14.
    M.S. Wang, Z.H. Hou, H.W. Xin, J. Phys. A 38, 145 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Z.H. Hou, T.J. Xiao, H.W. Xin, ChemPhysChem 7, 1520 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Jia, J.R. Li, Phys. Rev. Lett. 78, 994 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    C.J. Tessone, H.S. Wio, P. Hänggi, Phys. Rev. E 62, 4623 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    X.D. Zhang, X.Q. Yang, Y. Tao, PLoS ONE 6, 17104 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Zeng, H. Wang, L.R. Nie, Chaos 22, 033125 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    C.H. Zeng et al., J. Stat. Mech.: Theor. Exp. 10, 017 (2013)Google Scholar
  21. 21.
    L.R. Nie, D.C. Mei, Phys. Rev. E 77, 031107 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    W. Guo, L.C. Du, D.C. Mei, Physica A 391, 1270 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Wu, S.Q. Zhu, Phys. Lett. A 363, 202 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    M. Borromeo, F. Marchesoni, Phys. Rev. E 75, 041106 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    C.H. Zeng et al., Eur. Phys. J. B 85, 347 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    P.C. Bressloff, S. Coombes, Phys. Rev. Lett. 80, 4815 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    T. Piwonski, J. Houlihan, T. Busch, G. Huyet, Phys. Rev. Lett. 95, 040601 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    E.M. Craig, B.R. Long, J.M.R. Parrondo, H. Linke, Europhys. Lett. 81, 10002 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    D. Huber, L.S. Tsimring, Phys. Rev. Lett. 91, 260601 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D. Curtin, S.P. Hegarty, D. Goulding, J. Houlihan, Th. Busch, C. Masoller, G. Huyet, Phys. Rev. E 70, 031103 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    J. Houlihan, D. Goulding, Th. Busch, C. Masoller, G. Huyet, Phys. Rev. Lett. 92, 050601 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    X. Sang, C.H. Zeng, H. Wang, Eur. Phys. J. B 86, 1 (2013)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    J.D. Murray, Mathematical Biology: An Introduction, 3rd edn. (Springer, New York, 2002)Google Scholar
  35. 35.
    L.S. Tsimring, Phys. Rev. Lett. 87, 250602 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    D. Hennig, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 79, 041117 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    M. Gaudreault, J.M. Berbert, J. Viñals, Phys. Rev. E 83, 011903 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    W. Guo, L.C. Du, D.C. Mei, Eur. Phys. J. B 85, 182 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    W. Huang et al., Chem. Eng. Res. Des. 89, 1938 (2011)CrossRefGoogle Scholar
  41. 41.
    T.D. Frank, Phys. Rev. E 71, 031106 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    T.D. Frank, Phys. Rev. E 72, 011112 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1992)Google Scholar
  44. 44.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)Google Scholar
  45. 45.
    C. Van den Broeck, J.M.R. Parrondo, R. Toral, Phys. Rev. Lett. 73, 3395 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    J. Garcia-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, Berlin, 1999)Google Scholar
  47. 47.
    L. Ramírez-Piscina, J.M. Sancho, A. Hernandez-Machado, Phys. Rev. B 48, 125 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    D.T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    D.A. Beard, H. Qian, Chemical Biophysics: Quantitative Analysis of Cellular Systems (Cambridge University Press, New York, 2008)Google Scholar
  50. 50.
    R.F. Fox, Phys. Rev. A 33, 467 (1986)ADSCrossRefMathSciNetGoogle Scholar
  51. 51.
    P. Hänggi, F. Marchesoni, P. Grigolini, Z. Phys. B 56, 333 (1984)ADSCrossRefGoogle Scholar
  52. 52.
    C.W. Gardiner, in Handbook of Stochastic Methods, Springer Series in Synergetics (Springer-Verlag, Berlin, 1983), Vol. 13Google Scholar
  53. 53.
    E. Guardia, M. San Miguel, Phys. Lett. A 109, 9 (1985)ADSCrossRefGoogle Scholar
  54. 54.
    R.N. Mantegna, B. Spagnolo, Int. J. Bifurc. Chaos 8, 783 (1998)CrossRefMATHGoogle Scholar
  55. 55.
    N.V. Agudov, B. Spagnolo, Phys. Rev. E 64, 035102(R) (2001)ADSCrossRefGoogle Scholar
  56. 56.
    I. Dayan, M. Gitterman, G.H. Weiss, Phys. Rev. A 46, 757 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    A.A. Dubkov, N.V. Agudov, B. Spagnolo, Phys. Rev. E 69, 061103 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    A. Fiasconaro, B. Spagnolo, S. Boccaletti, Phys. Rev. E 72, 061110 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    A. Fiasconaro, B. Spagnolo, Phys. Rev. E 80, 041110-6 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    M. Scheffer, S.R. Carpenter, J.A. Foley, C. Folke, B. Walker, Nature 413, 591 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tao Yang
    • 1
  • Chun Zhang
    • 1
  • Qinglin Han
    • 1
  • Chun-Hua Zeng
    • 1
    • 2
  • Hua Wang
    • 2
  • Dong Tian
    • 1
  • Fei Long
    • 1
  1. 1.Faculty of ScienceKunming University of Science and TechnologyYunnanP.R. China
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingP.R. China

Personalised recommendations