Atomistic insight into end effects on structural properties of gold nanorods with polyhedral shapes

Regular Article

Abstract

Understanding the role of end effects in metal nanostructures with polyhedral shapes under imposed temperature has been of central importance in the study of structural and related properties for their applications in nanoelectronics and nanoscale devices. Thereby, in order to pursue a quantitative description of structural stability and transition of metal nanostructures, we develop a theoretical method to explore the roles of end parts of nanorods with polyhedral shapes, including edges, side facets, and vertexes, based on the atomic-bond-relaxation consideration. By using gold nanorods as an example, we report that the critical size of face-centered-cubic to hexagonal-close-packed transition becomes larger with increasing temperature. Meanwhile, it is demonstrated that the single bond energies at various sites (e.g., edges, side facets, and vertexes) show different behaviors under external stimulus. Our predictions agree well with the experimental observations and simulations, proposing that the developed method can be expected to be a general approach to understand structural stability and transition of polyhedral nanostructures for their desired applications.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    N.R. Jana, L. Gearheart, S.O. Obare, C.J. Murphy, Langmuir 18, 922 (2002)CrossRefGoogle Scholar
  2. 2.
    X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Nikoobakht, J. Wang, M.A. El-Sayed, Chem. Phys. Lett. 366, 17 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. A 107, 3372 (2003)CrossRefGoogle Scholar
  5. 5.
    J. Pérez-Juste, I. Pastoria-Santos, L.M. Liz-Marzán, P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005)CrossRefGoogle Scholar
  6. 6.
    N.R. Jana, L. Gearheart, C.J. Murphy, J. Phys. Chem. B 105, 4065 (2001)CrossRefGoogle Scholar
  7. 7.
    H. Yao, T. Onishi, S. Sato, K. Kimura, Chem. Lett. 4, 458 (2002)CrossRefGoogle Scholar
  8. 8.
    H.Y. Wu, H.C. Chu, T.J. Kuo, C.L. Kuo, M.H. Huang, Chem. Mater. 17, 6447 (2005)CrossRefGoogle Scholar
  9. 9.
    X. Li, T.-H. Lan, C.-H. Tien, M. Gu, Nat. Commun. 3, 998 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Chem. Soc. Rev. 37, 1783 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Fleger, M. Rosenbluh, Y.M. Strelniker, D.J. Bergman, A.N. Lagarkov, Eur. Phys. J. B 81, 85 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    L.Y. Chang, A.S. Barnard, L.C. Gontard, R.E. Dunin-Borkowski, Nano Lett. 10, 3073 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    H.K. Boon, C.J. Rossouw, M. Weyland, A.M. Funston, P. Mulvaney, J. Etheridge, Nano Lett. 11, 273 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    B. Goris, S. Bals, W. van den Broek, E.C. Argibay, S.G. Graña, L.M.L. Marzán, G. van Tendeloo, Nat. Mater. 11, 930 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Gan, S. Jiang, J. Appl. Phys. 113, 073507 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    G. Opletal, G. Grochola, Y.H. Chui, I.K. Snook, S.P. Russo, J. Phys. Chem. C 115, 4375 (2011)CrossRefGoogle Scholar
  17. 17.
    V.K. Sutrakar, D. Roy Mahapatra, J. Phys. Chem. C 115, 10394 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. B 104, 6152 (2000)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, C. Dellago, J. Phys. Chem. B 107, 9214 (2003)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, S. Teitel, Nano Lett. 5, 2174 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Wang, S. Teitel, C. Dellago, J. Comput. Theor. Nanosci. 4, 282 (2007)Google Scholar
  22. 22.
    A. Hoss, M. Nold, P. von. Blanckenhagen, O. Meyer, Phys. Rev. B 45, 8714 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P. Carnevali, F. Ercolessi, E. Tosatti, Phys. Rev. B 36, 6701 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Zhao, B.I. Yakobson, Phys. Rev. Lett. 91, 035501 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Zhang, Z.M. Zhu, Y. He, G. Ouyang, Appl. Phys. Lett. 100, 171912 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J. Diao, K. Gall, M.L. Dunn, Nat. Mater. 2, 656 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    J. Diao, K. Gall, M.L. Dunn, Phys. Rev. B 70, 075413 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Wang, G. Ouyang, L.L. Wang, L.M. Dang, D.S. Tang, C.Q. Sun, Chem. Phys. Lett. 463, 383 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Smith, A.M. Mohs, S.M. Nie, Nat. Nanotechnol. 4, 56 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G. Ouyang, Z.M. Zhu, W.G. Zhu, C.Q. Sun, J. Phys. Chem. C 114, 1805 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Ouyang, W.G. Zhu, C.Q. Sun, Z.M. Zhu, S.Z. Liao, Phys. Chem. Chem. Phys. 12, 1543 (2010)CrossRefGoogle Scholar
  32. 32.
    G. Ouyang, C.X. Wang, G.W. Yang, Chem. Rev. 109, 4221 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Wu, P. Li, Y.T. Pan, S. Warren, X. Yin, H. Yang, Chem. Soc. Rev. 41, 8066 (2012)CrossRefGoogle Scholar
  34. 34.
    G. Ouyang, M.X. Gu, S.Y. Fu, C.Q. Sun, W.G. Zhu, Europhys. Lett. 84, 66005 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    G. Ouyang, G.W. Yang, G.H. Zhou, Nanoscale 4, 2748 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    A. Kar, A. Patra, Nanoscale 4, 3608 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    R. Dingrevillea, J.M. Qu, M. Cherkaoui, J. Mech. Phys. Solids 53, 1827 (2005)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    G. Kästle, H.G. Boyen, A. Schröder, A. Plettl, P. Ziemann, Phys. Rev. B 70, 165414 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Z.M. Zhu, A. Zhang, G. Ouyang, G.W. Yang, J. Phys. Chem. C 115, 6462 (2011)CrossRefGoogle Scholar
  40. 40.
    C.Q. Sun, Prog. Solid State Chem. 35, 1 (2007)CrossRefGoogle Scholar
  41. 41.
    A.S. Barnard, P. Zapol, J. Chem. Phys. 121, 4276 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    A.S. Barnard, L.A. Curtiss, Rev. Adv. Mater. Sci. 10, 105 (2005)Google Scholar
  43. 43.
    A.S. Barnard, L.A. Curtiss, J. Mater. Chem. 17, 3315 (2007)CrossRefGoogle Scholar
  44. 44.
    C.J. Zhang, A. Alavi, J. Am. Chem. Soc. 127, 9808 (2005)CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Q. Jiang, L.H. Liang, D.S. Zhao, J. Phys. Chem. B 105, 6275 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Department of PhysicsHunan Normal UniversityChangshaHunan, P.R. China

Personalised recommendations