Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime

Regular Article

Abstract

We reveal that two-dimensional semiconductors with Rashba spin-orbit interaction (R2DG) exhibit exceptionally strong nonlinear optical response (NOR) in the terahertz frequency regime. The spin-split of the parabolic energy band in R2DG allows strong multiple-photon process to occur via inter-subband mechanism. We show sharp multiple photon edges in the nonlinear conductivity. The edges correspond to the cut-off effect produced by the multiple-photon process. For Rashba coupling parameter of λ R ≈ 10−10 eV m, electric field strength in the order of only 102 V/cm is required for the NOR to dominate over the linear response. Furthermore, the roles of the parabolic ‘free electron’ term H 0 and the linear Rashba term H R on NOR of R2DG are also investigated. Although the NOR is made possible due to the presence of a finite H R , H 0 does play an important role on the NOR especially in high temperature regime. H 0 has rendered R2DG a strong optical nonlinearity at elevated temperature which is not found in a purely linear system such as graphene. The results suggest the possibilities of Rashba spintronic system in the application of nonlinear terahertz devices.

Keywords

Solid State and Materials 

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnr, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    X.F. Wang, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 65, 165217 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    T. Koga, J. Nitta, H. Takayanagi, S. Datta, Phys. Rev. Lett. 88, 126601 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M. Khodas, A. Shekhter, A.M. Finkel’stein, Phys. Rev. Lett. 92, 086602 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Y.A. Bychkov, E.I. Rashba, J. Exp. Theor. Phys. Lett. 39, 78 (1984)Google Scholar
  8. 8.
    A.R. Wright, X.G. Xu, J.C. Cao, C. Zhang, Appl. Phys. Lett. 95, 072101 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Mikhailov, K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008)ADSGoogle Scholar
  10. 10.
    E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, Phys. Rev. Lett. 105, 097401 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G.-K. Lim et al., Nat. Photon. 5, 554 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Shareef, Y.S. Ang, C. Zhang, J. Opt. Soc. Am. B 29, 274 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y.S. Ang, S. Sultan, C. Zhang, Appl. Phys. Lett. 97, 243110 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    K.S. Novoselov et al., Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  17. 17.
    F. Gao, G. Wang, C. Zhang, Nanotech. 19, 465401 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    D. Yuan, W. Xu, Z. Zeng, F. Lu, Phys. Rev. B 72, 033320 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Maytorena, C. López-Bastidas, F. Mireles, Phys. Rev. B 74, 235313 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    J. Nitta, T. Akazaki, H. Takayanagi, Phys. Rev. Lett. 78, 1335 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    C.R. Ast et al., Phys. Rev. Lett. 98, 186807 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    K. Ishizaka et al., Nat. Mater. 10, 521 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    H. Sambe, Phys. Rev. A 7, 2203 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhou, M.W. Wu, Phys. Rev. B 83, 245436 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    K. Drese, M. Holthaus, Eur. Phys. J. D 5, 119 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    S. LaShell, B.A. McDougall, E. Jensen, Phys. Rev. Lett. 77, 3419 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    K. Yaji et al., Nat. Commun. 1, 17 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M. Koshino, T. Ando, Phys. Rev. B 73, 245403 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    E. McCann, D.S.L. Abergel, V.I. Fal’ko, Solid State Commun. 143, 110 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    A. Varykhalov et al., Phys. Rev. Lett. 108, 066804 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of PhysicsUniversity of WollongongWollongongAustralia
  2. 2.Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiP.R. China
  3. 3.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia

Personalised recommendations