The numerical operator method to the real time dynamics of currents through the nanostructures with different topologies

  • Pei Wang
  • Xuean Zhao
  • Ling Tang
Regular Article


We present the numerical operator method for studying the transient and stationary currents through nanostructures with different topologies, e.g., the flakes of square and honeycomb lattices. We find a quasi-stationary stage in the transient currents through the square flakes, but none in the honeycomb flakes. The stationary current through the square flakes increases smoothly with the voltage bias. In contrast, there is a threshold voltage in the current-voltage curve through a honeycomb flake, indicating a gap at the Fermi energy.


Mesoscopic and Nanoscale Systems 


  1. 1.
    P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, London, 1971)Google Scholar
  2. 2.
    A.-P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007) Google Scholar
  4. 4.
    J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    L. Mühlbacher, E. Rabani, Phys. Rev. Lett. 100, 176403 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    F.B. Anders, A. Schiller, Phys. Rev. Lett. 95, 196801 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    F. Heidrich-Meisner, A.E. Feiguin, E. Dagotto, Phys. Rev. B 79, 235336 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    H. Schoeller, Eur. Phys. J. Special Topics 168, 179 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    D.M. Kennes, S.G. Jakobs, C. Karrasch, V. Meden, Phys. Rev. B 85, 085113 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    P. Werner, T. Oka, A.J. Millis, Phys. Rev. B 79, 035320 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    F. Heidrich-Meisner, I. González, K.A. Al-Hassanieh, A.E. Feiguin, M.J. Rozenberg, E. Dagotto, Phys. Rev. B 82, 205110 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    P. Wang, Physica E 47, 141 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    G. Pal, W. Apel, L. Schweitzer, Phys. Rev. B 84, 075446 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science 320, 356 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    X. Jia, M. Hofmann, V. Meunier, B.G. Sumpter, J. Campos-Delgado, J.M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, M.S. Dresselhaus, Science 323, 1701 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Applied Physics, Zhejiang University of TechnologyHangzhouP.R. China
  2. 2.Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang UniversityHangzhouP.R. China

Personalised recommendations