Advertisement

The key role of carbon in hydrogen solubility in copper

Regular Article

Abstract

We investigate the effects of carbon (C) on hydrogen (H) solubility in copper (Cu) using a first-principles method. We show C can increase the solution energy of H in the bulk Cu originated from the charge density redistribution, which leads to a weak repulsion between H and C in Cu. On the contrary, we demonstrate the C-vacancy (C-V) complex can serve as a trapping centre of H, and one C-V complex can hold up to six H atoms. Moreover, it is found that C can effectively decrease the solution energy of a single H in the vacancy, 0.68 eV lower than that of H in the C-free vacancy, changing the solution process of H in the vacancy from endothermic to exothermic. This can be attributed to the strong bonding interaction between H and C in the vacancy. Based on analyzing the role of C in different metals, we propose that the effects of C on the H solubility in the vacancy mainly depend on the difference between the H-C interaction and the C-metal atom interaction. These indicate that C plays a key role in H trapping behavior in Cu.

Keywords

Solid State and Materials 

References

  1. 1.
    R. Causey, K. Wilson, T. Venhaus, W.R. Wampler, J. Nucl. Mater. 266, 467 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Davis, G.M. Kalinin, J. Nucl. Mater. 258, 323 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    R. Andreani, M. Gasparotto, Fus. Eng. Des. 61, 27 (2002) CrossRefGoogle Scholar
  4. 4.
    K. Ioki et al., J. Nucl. Mater. 329, 31 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    M. Fukui, R. Sakamoto, K. Araki, T. Fujiwara, T. Muroga, N. Yoshida, J. Nucl. Mater. 220, 810 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    I. Mukouda, Y. Shimomura, T. Iiyama, Y. Harada, Y. Katano, T. Nakazawa, D. Yamaki, K. Noda, J. Nucl. Mater. 283, 302 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    D. Nunes, R. Mateus, I.D. Nogueira, P.A. Carvalho, J.B. Correia, N. Shohoji, R.B. Gomes, H. Fernandes, C. Silva, N. Franco, E. Alves, J. Nucl. Mater. 390, 1039 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Y.W. You, X.S. Kong, X.B. Wu, Y.C. Xu, Q.F. Fang, J.L. Chen, G.N. Luo, C.S. Liu, B.C. Pan, Z.G. Wang, AIP Adv. 3, 012118 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    W.R. Wampler, T. Schoner, B. Lengeler, Philos. Mag. 34, 129 (1976) ADSCrossRefGoogle Scholar
  10. 10.
    J.B. Condon, T. Schober, J. Nucl. Mater. 207, 1 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    K. Kandasamy, M. Masuda, Y. Hayashi, J. Alloys Compd. 282, 23 (1999) CrossRefGoogle Scholar
  12. 12.
    M. Balooch, R.E. Stickney, Surf. Sci. 44, 310 (1974) ADSCrossRefGoogle Scholar
  13. 13.
    F. Besenbacher, B.B. Nielsen, S.M. Myers, J. Appl. Phys. 56, 3384 (1984) ADSCrossRefGoogle Scholar
  14. 14.
    T. Nagasaki, R. Yamada, H. Ohno, J. Nucl. Mater. 179, 335 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    I. Takagi, M. Akiyoshi, N. Matsubara, K. Moritani, H. Moriyama, Fus. Eng. Des. 81, 785 (2006) CrossRefGoogle Scholar
  16. 16.
    I. Takagi, M. Akiyoshi, N. Matsubara, T. Nishiuchi, K. Moritani, T. Sasaki, H. Moriyama, J. Nucl. Mater. 367, 489 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    A.N. Perevezentsev et al., J. Nucl. Mater. 372, 263 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    S. Dorfman, K.C. Mundim, D. Fuks, A. Berner, D.E. Ellis, J.V. Humbeeck, Mater. Sci. Eng. C 15, 191 (2001) CrossRefGoogle Scholar
  19. 19.
    H.B. Zhou, S. Jin, Chin. Phys. B 22, 076104 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    H.B. Zhou, Y. Zhang, X. Ou, Comput. Mater. Sci. 79, 923 (2013) CrossRefGoogle Scholar
  21. 21.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996) Google Scholar
  27. 27.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) ADSCrossRefGoogle Scholar
  28. 28.
    P. Kamakoti, D.S. Sholl, J. Membr. Sci. 225, 145 (2003) CrossRefGoogle Scholar
  29. 29.
    H.B. Zhou, Y.L. Liu, S. Jin, Y. Zhang, G.N. Luo, G.H. Lu, Nucl. Fusion 50, 115010 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    K.P. Huber, G. Hertzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Norstrand Reinhold, New York, 1979) Google Scholar
  31. 31.
    X.D. Ou, L.Q. Shi, K. Sato, Q. Xu, Y.X. Wang, Nucl. Fusion 52, 123003 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Puska, R.M. Nieminen, M. Manninen, Phys. Rev. B 24, 3037 (1981) ADSCrossRefGoogle Scholar
  33. 33.
    J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd edn. (New York, 1985) Google Scholar
  34. 34.
    X.S. Kong, Y.W. You, Q.F. Fang, C.S. Liu, J.L. Chen, G.N. Luo, B.C. Pan, Z. Wang, J. Nucl. Mater. 433, 357 (2013) ADSCrossRefGoogle Scholar
  35. 35.
    Y.L. Liu, H.B. Zhou, Y. Zhang, G.H. Lu, G.N. Luo, Comput. Mater. Sci. 50, 3213 (2011) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsBeihang UniversityBeijingP.R. China
  2. 2.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations