Advertisement

The hydrogenation-dependent thermal expansion properties of hydrogenated graphene

Regular Article

Abstract

Thermal expansion properties of hydrogenated graphene are investigated by performing the first-principles calculations. We find that both fully hydrogenated graphene (graphane) and half hydrogenated graphene (graphone) exhibit negative thermal expansion properties at low temperatures. Their thermal expansion behaviors display the hydrogenation-dependent features: hydrogenated graphene with boat-like structures possess better negative thermal expansion properties than those with chair-like structures. In particular, the graphane with boat-like structure shows giant negative thermal expansion, with thermal expansion coefficient of about −4.1 × 10-5 K-1. Such different thermal behaviors are ascribed to different vibrational features, and the typical modes contributing to the negative thermal properties of the systems are addressed. Our results will be of importance for both fundamental understanding and the application of this family in nanodevices in the future.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, V. Grigoreva, S.V. Dubonos, Nature 438, 197 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007) CrossRefGoogle Scholar
  8. 8.
    L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science 320, 356 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    F. Liu et al., Adv. Mater. 24, 1089 (2012) CrossRefGoogle Scholar
  13. 13.
    J. Hu, J. Alicea, R.Q. Wu, M. Franz, Phys. Rev. Lett. 109, 266801 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Tyurnina, K. Tsukagoshi, H. Hiura, A.N. Obraztsov, Carbon 52, 49 (2013) CrossRefGoogle Scholar
  15. 15.
    X.S. Wu, M. Sprinkle, X.B. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett. 101, 026801 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Yan, L.D. Xian, M.Y. Chou, Phys. Rev. Lett. 103, 086802 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    J.O. Sofo, A.S. Chardhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Elias et al., Science 323, 610 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Nano Lett. 9, 3867 (2009) CrossRefGoogle Scholar
  22. 22.
    F.W. Averill, J.R. Morris, Phys. Rev. B 84, 035411 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105, 037002 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    S. Lebegue, M. Klintenberg, O. Eriksson, M.I. Katsnelson, Phys. Rev. B 79, 245117 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    B.S. Pujari, S. Gusarov, M. Brett, A. Kovalenko, Phys. Rev. B 84, 041402 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    H. Gao, L. Wang, J. Zhao, F. Ding, J. Lu, J. Phys. Chem. C 115, 3236 (2011) CrossRefGoogle Scholar
  27. 27.
    A.S. Barnard, I.K. Snook, J. Mater. Chem. 20, 10459 (2010) CrossRefGoogle Scholar
  28. 28.
    M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, Nanotechnology 20, 465704 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    M.H. Wu, X.J. Wu, Y. Gao, X.C. Zeng, J. Phys. Chem. C 114, 139 (2010) CrossRefGoogle Scholar
  30. 30.
    R. Balog et al., Nat. Mater. 9, 315 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    C.D. Reddy, Y.W. Zhang, V.B. Shenoy, Nanotechnology 23, 165303 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    W. Zou, Z.Z. Yu, C.X. Zhang, J.X. Zhong, L.Z. Sun, Appl. Phys. Lett. 100, 103109 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Jiang, J.S. Wang, B.W. Li, Phys. Rev. B 80, 205429 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    H.J. Shen, Micro and Nano Lett. 8, 740 (2013) CrossRefGoogle Scholar
  36. 36.
    X.H. Zhou, Y. Huang, X.S. Chen, W. Lu, Solid State Commun. 157, 24 (2013) ADSCrossRefGoogle Scholar
  37. 37.
    H. Peelaers, A.D. Hernandez-Nieves, O. Leenaerts, B. Partoens, F.M. Peeters, Appl. Phys. Lett. 98, 051914 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997) CrossRefGoogle Scholar
  39. 39.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  41. 41.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) and references therein ADSGoogle Scholar
  42. 42.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    M.T. Yin, M.L. Cohen, Phys. Rev. B 26, 3259 (1982) ADSCrossRefGoogle Scholar
  44. 44.
    K. Wang, R.R. Reeber, Appl. Phys. Lett. 76, 2203 (2000) ADSCrossRefGoogle Scholar
  45. 45.
    E. Grüneisen, Hanbuch der Physik 10, 1 (1926) Google Scholar
  46. 46.
    T.H.K. Barron, Philos. Mag. 46, 720 (1955) Google Scholar
  47. 47.
    G.D. Barrera, J.A.O. Bruno, T.H.K. Barron, N.L. Allan, J. Phys.: Condens. Matter 17, R217 (2005) ADSGoogle Scholar
  48. 48.
    T.M.G. Mohiuddin et al., Phys. Rev. B 79, 205433 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    D.M. Basko, S. Piscanec, A.C. Ferrari, Phys. Rev. B 80, 165413 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    B. Kelly, Physics of Graphite (Applied Science, Englewood, 1981) Google Scholar
  51. 51.
    I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Thechnol. B 25, 2558 (2007) CrossRefGoogle Scholar
  52. 52.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Science and Technology of China, HefeiAnhuiP.R. China
  2. 2.Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, HefeiAnhuiP.R. China

Personalised recommendations