Advertisement

Nonadiabatic Van der Pol oscillations in molecular transport

  • Alexey Kartsev
  • Claudio Verdozzi
  • Gianluca Stefanucci
Regular Article

Abstract

The force exerted by the electrons on the nuclei of a current-carrying molecular junction can be manipulated to engineer nanoscale mechanical systems. In the adiabatic regime a peculiarity of these forces is negative friction, responsible for Van der Pol oscillations of the nuclear coordinates. In this work we study the robustness of the Van der Pol oscillations against high-frequency sources. For this purpose we go beyond the adiabatic approximation and perform full Ehrenfest dynamics simulations. The numerical scheme implements a mixed quantum-classical algorithm for open systems and is capable to deal with arbitrary time-dependent driving fields. We find that the Van der Pol oscillations are extremely stable. The nonadiabatic electron dynamics distorts the trajectory in the momentum-coordinate phase space but preserves the limit cycles in an average sense. We further show that high-frequency fields change both the oscillation amplitudes and the average nuclear positions. By switching the fields off at different times one obtains cycles of different amplitudes which attain the limit cycle only after considerably long times.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    R.E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955) Google Scholar
  2. 2.
    G.D. Mahan, Many-particle Physics, 2nd edn. (Plenum Press, New York, 1990) Google Scholar
  3. 3.
    Electron and Phonons, edited by J.M. Ziman (Oxford University Press, New York, 1960) Google Scholar
  4. 4.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    G. Hunter, Int. J. Quantum Chem. 9, 237 (1975) CrossRefGoogle Scholar
  6. 6.
    A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985) ADSCrossRefGoogle Scholar
  8. 8.
    Electron-Phonon Interactions in Low-Dimensional Structures, edited by L. Challis (Oxford University Press, Oxford, 2003) Google Scholar
  9. 9.
    J.C. Cuevas, E. Scheer, Molecular Electronics An Introduction to Theory and Experiment (World Scientific Publishing Co, Hackensack, 2010) Google Scholar
  10. 10.
    A.A. Balandin, J. Nanosci. Nanotechnol. 5, 1015 (2005) CrossRefGoogle Scholar
  11. 11.
    E.G. Emberly, G. Kirczenow, Phys. Rev. B 64, 125318 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    T.N. Todorov, J. Hoekstra, A.P. Sutton, Phys. Rev. Lett. 86, 3606 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    M. Di Ventra, S.T. Pantedelis, N.D. Lang, Phys. Rev. Lett. 88, 046801 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    M. Brandbyge, K. Stokbro, J. Taylor, J.L. Mozos, P. Ordejon, Phys. Rev. B 67, 193104 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    M. Cizek, M. Thoss, W. Domcke, Phys. Rev. B 70, 125406 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    P.S. Cornaglia, H. Ness, D.R. Grempel, Phys. Rev. Lett. 93, 147201 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    T. Frederiksen, M. Brandbyge, N. Lorente, A.-P. Jauho, Phys. Rev. Lett. 93, 256601 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    M. Paulsson, T. Frederiksen, M. Brandbyge, Phys. Rev. B 72, 201101(R) (2005) ADSCrossRefGoogle Scholar
  19. 19.
    T. Frederiksen, M. Paulsson, M. Brandbyge, A.P. Jauho, Phys. Rev. B 75, 205413 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    M. Galperin, A. Nitzan, M.A Ratner, J. Phys.: Condens. Matter 19, 103201 (2007) ADSGoogle Scholar
  21. 21.
    M. Galperin, A. Nitzan, M.A Ratner, J. Phys.: Condens. Matter 20, 374107 (2008) Google Scholar
  22. 22.
    R. Härtle, C. Benesch, M. Thoss, Phys. Rev. Lett. 102, 146801 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    R. Zhang, I. Rungger, S. Sanvito, S. Hou, Phys. Rev. B 84, 085445 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Horsfield, D.R. Bowler, A.J. Fisher, J. Phys.: Condens. Matter 16, L65 (2004) ADSGoogle Scholar
  25. 25.
    A.P. Horsfield, D.R. Bowler, A.J. Fisher, T.N. Todorov, C.G. Sánchez, J. Phys.: Condens. Matter 16, 8251 (2004) ADSGoogle Scholar
  26. 26.
    C. Verdozzi, G. Stefanucci, C.O. Almbladh, Phys. Rev. Lett. 97, 046603 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    C. Sanchez, M. Stamenova, S. Sanvito, D.R. Bowler, A.P. Horsfield, T. Todorov, J. Chem. Phys. 124, 214708 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    M. Todorovic, D.R. Bowler, J. Phys.: Condens. Matter 23, 345301 (2011) Google Scholar
  29. 29.
    K.F. Albrecht, H. Wang, L. Mühlbacher, M. Thoss, A. Komnik, Phys. Rev. B 86, 081412 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    K.F. Albrecht, A. Martin-Rodero, R.C. Monreal, L. Mühlbacher, A. Levy Yeyati, Phys. Rev. B 87, 085127 (2013) Google Scholar
  31. 31.
    D. Dundas, E.J. McEniry, T.N. Todorov, Nat. Nanotechnol. 4, 99 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    T.N. Todorov, D. Dundas, E.J. McEniry, Phys. Rev. B 81, 075416 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    R. Hussein, A. Metelmann, P. Zedler, T. Brandes, Phys. Rev. B 82, 165406 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    J.T. Lü, P. Hedegard, M. Brandbyge, Phys. Rev. Lett. 107, 046801 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    J.T. Lü, M. Brandbyge, P. Hedegard, Nano Lett. 10, 1657 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Tully, Ann. Rev. Phys. Chem. 51, 153 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    N. Bode, S.V. Kusminskiy, R. Egger, F. von Oppen, Phys. Rev. Lett. 107, 036804 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    N. Bode, S.V. Kusminskiy, R. Egger, F. von Oppen, Beilstein J. Nanotechnol. 3, 144 (2012) CrossRefGoogle Scholar
  39. 39.
    S.D. Bennett, A.A. Clerk, Phys. Rev. B 74, 201301 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    A. Metelmann, T. Brandes, Phys. Rev. B 84, 155455 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    A. Nocera, C.A. Perroni, V. Marigliano Ramaglia, V. Cataudella, Phys. Rev. B 83, 115420 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    B. van der Pol, Radio Rev. 1, 701 (1920) Google Scholar
  43. 43.
    S.H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books, Cambridge, 1994) Google Scholar
  44. 44.
    A.S. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, New York, 2001) Google Scholar
  45. 45.
    S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross, Phys. Rev. B 72, 035308 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013) Google Scholar
  47. 47.
    G. Stefanucci, Phys. Rev. B 75, 195115 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    H. Eisele, Electronic Lett. 46, s8 (2010) CrossRefGoogle Scholar
  49. 49.
    M. Tonouchi, Nat. Photon. 1, 97 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    S.W.D. Bailey, I. Amanatidis, C.J. Lambert, Phys. Rev. Lett. 100, 256802 (2008) ADSCrossRefGoogle Scholar
  51. 51.
    X.L. Qi, S.C. Zhang, Phys. Rev. B 79, 235442 (2009) ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    R. Bustos-Marún, G. Refael, F. von Oppen, arXiv:1304.4969 [cond-mat.mes-hall] (2013)

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexey Kartsev
    • 1
  • Claudio Verdozzi
    • 1
    • 2
  • Gianluca Stefanucci
    • 2
    • 3
    • 4
  1. 1.Mathematical Physics, Lund UniversityLundSweden
  2. 2.European Theoretical Spectroscopy Facility (ETSF)FürstenfeldbrucGermany
  3. 3.Dipartimento di Fisica, Università di Roma Tor VergataRomeItaly
  4. 4.INFN, Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations