Gauge invariance and spinon-dopon confinement in the t-J model: implications for Fermi surface reconstruction in the cuprates

Regular Article

Abstract

We discuss the application of the two-band spin-dopon representation of the t-J model to address the issue of the Fermi surface reconstruction observed in the cuprates. We show that the electron no double occupancy (NDO) constraint plays a key role in this formulation. In particular, the auxiliary lattice spin and itinerant dopon degrees of freedom of the spin-dopon formulation of the t-J model are shown to be confined in the emergent U(1) gauge theory generated by the NDO constraint. This constraint is enforced by the requirement of an infinitely large spin-dopon coupling. As a result, the t-J model is equivalent to a Kondo-Heisenberg lattice model of itinerant dopons and localized lattice spins at infinite Kondo coupling at all dopings. We show that mean-field treatment of the large vs. small Fermi surface crossing in the cuprates which leaves out the NDO constraint, leads to inconsistencies and it is automatically excluded form the t-J model framework.

Keywords

Solid State and Materials 

References

  1. 1.
    N. Doiron-Leyraud et al., Nature 447, 565 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Chubukov, D.K. Morr, Phys. Rep. 288, 355 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    T. Senthil, S. Sachdev, M. Vojta, Phys. Rev. Lett. 90, 216403 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    T. Senthil, M. Vojta, S. Sachdev, Phys. Rev. B 69, 035111 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    I. Paul, C. Pepin, M.R. Norman, Phys. Rev. Lett. 98, 026402 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    P. Coleman, N. Andrei, Phys. Rev. Lett. 62, 595 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Si, in Understanding Quantum Phase Transitions, edited by L.D. Carr (CRC Press/Taylor Francis, Boca Raton, 2010) Google Scholar
  8. 8.
    J.-W. Mei, S. Kawasaki, G.-Q. Zheng, Z.-Y. Weng, X.-G. Wen, Phys. Rev. B 85, 134519 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    M. Punk, S. Sachdev, Phys. Rev. B 85, 195123 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    V.A. Sidorov et al., Phys. Rev. Lett. 89, 157004 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    R. Bel et al., Phys. Rev. Lett. 92, 217002 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    P. Coleman, in Lectures on the Physics of Highly Correlated Electron Systems VI, edited by F. Manchini (American Institute of Physics, New York, 2002), p. 79Google Scholar
  13. 13.
    T.C. Ribeiro, X.-G. Wen, Phys. Rev. Lett. 95, 057001 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    T.C. Ribeiro, X.-G. Wen, Phys. Rev. B 74, 155113 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A. Ferraz, E. Kochetov, M. Mierzejewski, Phys. Rev. B 73, 064516 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    R.C. Pepino, A. Ferraz, E. Kochetov, Phys. Rev. B 77, 035130 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    L.N. Bulaevskii, E.L. Nagaev, D.I. Khomskii, Sov. Phys. J. Exp. Theor. Phys. 27, 836 (1968)ADSGoogle Scholar
  18. 18.
    W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 1324 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    B.I. Shraiman, E.D. Siggia, Phys. Rev. B 42, 2485 (1990) ADSCrossRefGoogle Scholar
  20. 20.
    C. Nayak, Phys. Rev. Lett. 85, 178 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    C. Nayak, Phys. Rev. Lett. 86, 943 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A. Ferraz, E. Kochetov, B. Uchoa, Phys. Rev. Lett. 98, 069701 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    V. Kalmeyer, R.B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987) ADSCrossRefGoogle Scholar
  24. 24.
    R.B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988) ADSCrossRefGoogle Scholar
  25. 25.
    A.L. Fetter, C.B. Hanna, R.B. Laughlin, Phys. Rev. B 39, 9679R (1989) ADSCrossRefGoogle Scholar
  26. 26.
    G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    C. Lacroix, Solid State Commun. 54, 991 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Abrikosov, Physics 2, 5 (1965)Google Scholar
  29. 29.
    V.G. Vaks, A.I. Larkin, S.A. Pikin, J. Exp. Theor. Phys. Lett. 26, 188 (1968)ADSGoogle Scholar
  30. 30.
    R. Eder, P. Wróbel, Phys. Rev. B 84, 035118 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    R. Eder, P. Wróbel, Y. Ohta, Phys. Rev. B 82, 155109 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    V.I. Belinicher, A.L. Chernyshev, V.A. Shubin, Phys. Rev. B 56, 3381 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    V.I. Belinicher, A.L. Chernyshev, A.V. Dotsenko, O.P. Sushkov, Phys. Rev. B 51, 6076 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    M. Scheunert, W. Nahm, V. Rittenberg, J. Math. Phys. 18, 155 (1977)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    P.B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    A. Ferraz, E.A. Kochetov, Nucl. Phys. B 853, 710 (2011) ADSCrossRefMATHGoogle Scholar
  37. 37.
    Y. Nagaoka, Phys. Rev. 147, 392 (1966) ADSCrossRefGoogle Scholar
  38. 38.
    S. Elitzur, Phys. Rev. D 12, 3978 (1975) ADSCrossRefGoogle Scholar
  39. 39.
    M. Sigrist, H. Tsunetsugu, K. Ueda, T.M. Rice, Phys. Rev. B 46, 13838 (1992) ADSCrossRefGoogle Scholar
  40. 40.
    H. Shiba, M. Ogata, Int. J. Mod. Phys. B 5, 31 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Experimental and Theoretical PhysicsInternational Institute of Physics — UFRNNatalBrazil
  2. 2.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations