Advertisement

The electric “Meissner effect” in spin superconductor

Regular Article

Abstract

Spin superconductivity results from the condensation of spin-triplet but charge neutral particles (e.g., triplet excitons). We present a Laplace-type equation describing electrostatic properties of spin superconductors. With the phenomenological equations obtained, we show that there exists an electric “Meissner effect” against the spatial variation of the electric field along the magnetic moment direction, in particular, (ŝ·∇)(ŝ·E). Several distinctive characteristics of this electric “Meissner effect” emerge in spin superconductors. Firstly, the variation of the electric field (ŝ·∇)(ŝ·E) has an abrupt decrease at the boundary, which is analogous to the screen effect for electric field E in a uniform dielectric material. Secondly, the super-spin current distributes inside or near the boundaries of a spin superconductor, which depends on the magnitude of gradient for the external driven electric field.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    H. Kamerlingh Onnes, Leiden Commun. 122b, 122c (1911) Google Scholar
  2. 2.
    W. Meissner, R. Ochsenfeld, Naturwiss 21, 787 (1933) ADSCrossRefGoogle Scholar
  3. 3.
    F. London, H. London, Proc. R. Soc. London Ser. A 155, 71 (1935) ADSCrossRefGoogle Scholar
  4. 4.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957) ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    G.A. Prinz, Science 282, 1660 (1998) CrossRefGoogle Scholar
  7. 7.
    S.I. Schevchenko, Fiz. Nizk. Temp. 2, 505 (1976) Google Scholar
  8. 8.
    Yu.E. Lozovik, V.I. Yudson, J. Exp. Theor. Phys. Lett. 22, 274 (1975) Google Scholar
  9. 9.
    U. Sivan, P.M. Solomon, H. Shtrikman, Phys. Rev. Lett. 68, 1196 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    L.V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, G. Weimann, Phys. Rev. Lett. 73, 304 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, D.S. Chemla, Nature 417, 47 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    M. Bayer, V.B. Timofeev, F. Faller, T. Gutbrod, A. Forchel, Phys. Rev. B 54, 8799 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    D. Nandi, A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Nature 448, 481 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Eisenstein, A.H. MacDonald, Nature 432, 691 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    C.H. Zhang, Y.N. Joglekar, Phys. Rev. B 77, 233405 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    B. Seradjeh, H. Weber, M. Franz, Phys. Rev. Lett. 101, 246404 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    H. Min, R. Bistritzer, J.J. Su, A.H. MacDonald, Phys. Rev. B 78, 121401 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Su, A.H. MacDonald, Nat. Phys. 4, 799 (2008) CrossRefGoogle Scholar
  20. 20.
    R. Bistritzer, A.H. MacDonald, Phys. Rev. Lett. 101, 256406 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    I.L. Aleiner, D.E. Kharzeev, A.M. Tsvelik, Phys. Rev. B 76, 195415 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    M.Yu. Kharitonov, K.B. Efetov, Phys. Rev. B 78, 241401(R) (2008) ADSCrossRefGoogle Scholar
  23. 23.
    M.P. Mink, H.T.C. Stoof, R.A. Duine, A.H. MacDonald, Phys. Rev. B 84, 155409 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    O.L. Berman, Y.E. Lozovik, G. Gumbs, Phys. Rev. B 77, 155433 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    O.L. Berman, R.Ya. Kezerashvili, K. Ziegler, Phys. Rev. B 85, 035418 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    D.V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    D.V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    Q.F. Sun, Z.T. Jiang, Y. Yu, X.C. Xie, Phys. Rev. B 84, 214501 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    H.W. Liu, H. Jiang, X.C. Xie, Q.F. Sun, Phys. Rev. B 86, 085441 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    Q.F. Sun, X.C. Xie, Phys. Rev. B 87, 245427 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    Q.F. Sun, X.C. Xie, Phys. Rev. B 72, 245305 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    Q.F. Sun, H. Guo, J. Wang, Phys. Rev. B 69, 054409 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    J.E. Hirsch, Phys. Rev. B 60, 14787 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.International Center for Quantum Materials, Peking UniversityBeijingP.R. China
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingP.R. China

Personalised recommendations